

INVESTIGATION OF RARE EARTH ELEMENT EXTRACTION FROM NORTH DAKOTA COAL-RELATED FEEDSTOCKS

Steve Benson, Dan Laudal, and Mike Mann, University of North Dakota Dan Palo, Barr Engineering and Shane Addleman, PNNL

Goals and Objectives

Goal:

 To develop a high performance, economically viable, and environmentally benign technology to recover rare earth elements from North Dakota lignite coal, associated sediments, and a lignite drying system reject stream.

Objectives:

- Determine the abundance and forms of rare earth elements in lignite, associated roof and floor materials, and coal drying reject streams,
- Determine the potential to concentrate REEs through traditional and augmented physical beneficiation methods.
- Identify the optimum methods to separate and concentrate the REEs to 2 percent by weight,
- Perform a technical and economic analysis of the optimum concentrating scheme,
- Conduct lab-scale test work to validate the separation methodology selected.

Workplan

Task 1.0 - Project Management and Planning

Task 2.0 – Sampling and Characterization of Proposed Feedstocks

Task 3.0 - Technical and Economic Feasibility

Task 4.0 – Laboratory-scale Testing for Determination of Bench-scale Design Parameters

Task 5.0 - Bench-scale System Design

Task 6.0 – Final Report

Sampling

- Mine Sampling Lignite coal, roof, parting and floor materials from the Falkirk mine.
- Plant Sampling: GRE DryFiningTM inlet coal, air jig outlet, feeder outlet and fabric filter fines from the Coal Creek station.

Sampling

Falkirk Mine Sampling

Coal Creek Station Sampling

Characterization

Category	Equipment	Function
Rulk chemical composition	ASTM standard analysis	Proximate analysis; Ultimate analysis; Ash composition
	X-ray Iluorescence	Bulk chemistry; major, minor and trace elements including RFF
	Inductive coupled plasma-mass spectrometry	Rorate fusion followed by digestion Abundance of trace elements including REE
	Neutron activation analysis	Level of trace element and REE in solid samples
Forms of RCC	X ray diffraction	Bulk mineralogy; major and minor crystalline phases
	Scanning electron microscopy/x- ray microanalysis	Morphological analysis – imaging and chemical composition of minerals
		CCSEM – chemical composition, size and associations of mineral grains (Included or excluded relative to coal particles)
	Chemical fractionation	Quantitatively determine the modes of occurrence of the Inorganic elements based on solubility in water, ammonium acctate, and HCI

Separation and Concentration

Technical and Economic Analysis

Develop several potential processing schemes for concentrating REEs from the chosen feedstock(s), followed by process modeling and technical and economic evaluation.

Bench-scale System Design

 Basis of the bench-scale design will be the process flow diagrams for a commercial scale facility, with a scaled-down throughput of 5-10 kg/hr of the proposed feedstock.

Steven A. Benson, Ph.D.
Institute for Energy Studies &
Energy & Environmental Research Center,
University of North Dakota
(701) 777-5177; Mobile: (701) 213-7070
steve.benson@engr.und.edu