Electrochemical Reduction of CO₂ to Formic Acid Using Gas Diffusion Electrode Technology

Authors: Brian T Skinn¹, Sujat Sen², Timothy D Hall¹, Fikile R Brushett², E. Jennings Taylor¹

¹ Faraday Technology, Inc., Englewood, OH ² Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA

Principal Investigator: BrianSkinn@FaradayTechnology.com, (937) 836-7749

Funding: Department of Energy STTR Contract No. DE-SC0015173, TPOC: John Litynski (John.Litynski@hq.doe.gov)

Problem

- New technologies are needed to provide solutions for conversion of captured CO₂ as part of a multifaceted approach for mitigation and maintenance of greenhouse gas production.

Technical Approach

- Gas diffusion electrode (GDE) based electroreactor for CO₂ conversion to formic acid (FA)
- Tin cathodic catalyst deposited by FARADAYIC® ElectroDeposition (ED)
- Commercial mixed-oxide anodic catalyst
- Exploit scalable, low-cost ED fabrication methods and MIT expertise in electrochemical analysis and reactor fabrication

High-Utilization Tin Catalyst via FARADAYIC® ElectroDeposition

- Conventional methods use catalyst dispersed in ionomer suspension
 - Significant fraction of catalyst isolated from electrical contact and/or far from gas phase
- FARADAYIC® ElectroDeposition intrinsically produces electrically active catalyst = “High Utilization”
 - Smaller mass of applied catalyst, but with significantly enhanced per-mass catalytic efficiency
 - Waveform tuning also enables control over catalyst particle size, microstructure, active surface area, etc.

Catalyzed GDE Preparation

- Ionomer Application
 - Sigracet 39BC gas diffusion layer (GDL) with applied microporous layer (MPL)
- Float 40mm × 40mm GDL square MPL-side down on ionomer dispersion in isopropanol
- Sn ElectroDeposition – FARADAYIC® ElectroCell

Electrochemical Testing

- Perform electrolysis at constant half-cell potential and measure:
 - Total response current
 - Formic acid production
 - UV absorbance at 202 nm
- Apparatus Configuration
 - CO₂ flush gas behind GDE
 - Na₂CO₃ + Na₂SO₄ electrolyte (pH ~ 10)
 - H₂/Pt GDE counter electrode used to reduce total cell potential
- Desired reaction:
 \[\text{CO}_2 + 2\text{H}^+ + 2e^- \rightarrow \text{HCOOH} \]

Preliminary Results

- Preliminary FARADAYIC® ElectroDeposition (ED) samples show significantly increased total and FA-efficient current densities relative to conventional spray-coating method and literature data
 - \(i_{\text{cell}} \geq 2.75 \text{ mA cm}^{-2} \)
 - %FA > 70%
- Favorable short-term catalyst durability
- Ongoing optimization
 - Ionomer loading
 - Sn electrocatalyst loading
 - Sn electrocatalyst ED parameters
 - GDE (GDL/MPL) parameters

Alpha-Scale Electroreactor

- Electroreactor design previously developed by MIT for CO₂ → CO conversion studies
- COMSOL modeling facilitates rapid design optimization to:
 - Increase energy efficiency
 - Minimize pressure drop
 - Maximize conversion

Economic / Scale-Up Analysis

Life Cycle Analysis

- Standard methodologies
 - EPA, DOE/NETL, etc.

Scale-Up Analysis

- Technology evaluation
- Market-entry / pre-commercial analysis