Accelerating the development of transformational solvent systems for CO$_2$ separations

FWP 65872

DAVID J. HELDEBRANT
NETL CO$_2$ CAPTURE TECHNOLOGY MEETING
PITTSBURGH, PA
AUGUST 11, 2016
PNNL at a Glance

Intellectual property and startups

Average ONE INVENTION per day
Average ONE PATENT per week
822 LICENSES since 1970s
170+ BUSINESSES started with PNNL IP or executives

FY15:
$955 MILLION in R&D expenditures
FY15: 4,400 STAFF
98 R&D 100 AWARDS
81 Tech transfer AWARDS

822 LICENSES since 1970s
170+ BUSINESSES started with PNNL IP or executives

Average ONE INVENTION per day
Average ONE PATENT per week

U.S. DEPARTMENT OF ENERGY
Proudly Operated by Battelle Since 1965

FY2015 R&D

ENERGY & ENVIRONMENT 20%
NATIONAL SECURITY 33%
OTHER AGENCIES 20%
DHS 6%
NONFEDERAL 2%
SCIENCE 19%
Overview: Integrating Molecular Design, Synthesis & Testing For Multiple Platforms

Aiding DOE’s transformational solvent portfolio address the grand challenge of viscosity
Project Goals and Objectives

Objective

▶ Enable advanced solvent designs for all water-lean solvents up DOE’s TRL readiness scale to enable large scale testing and deployment by year 2030.

Goals

▶ Develop a reduced order viscosity model that can predict key solvent physical and thermodynamic properties
▶ Down-select hundreds of candidate molecules to 2-4 viable derivatives
▶ Design testing devices for expedited testing of candidate solvents
▶ Collect necessary additional thermodynamic and kinetic data to validate models
▶ Partner with technology owners to advance the field of water-lean solvents
Project Schedule and Major Tasks

Funding: $2,561,000 / 24 months

BP 1 (May 2014-May 2015)
- 1. Project management ✓
- 2. Molecular development ✓
 - Design 200 molecules from current formulation ✓
 - Construct physical property prediction model ✓
 - Predict physical and thermodynamic properties ✓
 - Revise performance targets ✓
- 3. Synthesis and characterization of candidate molecules ✓
 - Synthesize promising candidates from Task 2 ✓
 - Measure material physical and thermodynamic properties ✓

BP 2 (May 2015-September 2016)
- 1. Project management ✓
- 4. Measure key process physical and thermodynamic data
 - Kinetics, vapor-liquid equilibria
- 5. Process performance projections
- 6. Alternative synthetic methodology identified ✓
- 7. Translation of capabilities to other solvent platforms
 - Collaboration with GE on GAP-1 aminosilicones
Case Study:
CO₂-Binding Organic Liquids (CO₂BOLs)

- "Water-lean" organic switchable ionic liquid solvent system
 - Optimal water level in circulating solvent estimated
 - (~5 wt. % water confirmed by simulation)
 - Heat of solution -80 kJ/mol (similar to amines @ -85 kJ/mol)
 - CO₂BOL material projected at ($35-70/kg)

*Nile Red Solvatochromatic Polarity Scale
Similar to aqueous amine systems except:
- Coalescing tank
- Antisolvent loop
- Water management equipment
- Commercially available equipment and infrastructure
CO₂BOLs/PSAR Could be Energetically Viable With Lower Solvent Viscosities

<table>
<thead>
<tr>
<th></th>
<th>MEA (Recreated NETL Case 10)</th>
<th>CO₂BOL/PSAR (356 cP)</th>
<th>CO₂BOL/PSAR (578 cP)</th>
<th>CO₂BOL/PSAR (20 cP Target)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rich solvent loading (mol CO₂/mol solvent)</td>
<td>0.49</td>
<td>0.28</td>
<td>0.34</td>
<td>0.50</td>
</tr>
<tr>
<td>Temperature Required for Regeneration (°C)</td>
<td>120</td>
<td>104</td>
<td>104</td>
<td>85</td>
</tr>
<tr>
<td>Estimated Reboiler Duty (BTU/lb CO₂)</td>
<td>1,520</td>
<td>1,107</td>
<td>965</td>
<td>870</td>
</tr>
<tr>
<td>Increase in Net Electric Power over Case 10 (%)</td>
<td>0</td>
<td>7</td>
<td>9</td>
<td>16</td>
</tr>
</tbody>
</table>

- Viscosity limits the possible *rich* solvent CO₂ loadings and reboiler duty
- If a 20 cP target were achieved:
 - Reboiler duties as low as 870 btu/lb CO₂, (57% of Case 10)
 - 16% increase in net power at an equivalent coal feed rate
Cycle-1 Showed Significant Reductions in Viscosity

- Down-selected from >350 molecules to 13 variants for each viscosity reducing factor
 - Internal H-bond and cation charge solvation (ether) show most promise
- 60% reduction in viscosity for MEIPADM-2-BOL
- Experimental data used to validate molecular models

![Graph showing viscosity vs. loading α_CO2](image)

3,000 cP for IPADM-2-BOL @ 50 mol% CO₂ loading
1,100 cP for MEIPADM-2-BOL @ 50 mol% CO₂ loading
Technical Approach: CO$_2$BOL Solvent Class Cycle-2

Using PNNL’s infrastructure for 2nd level refinement of CO$_2$BOLs

- Down-select variants from Cycle-1 derivative
- Use reduced viscosity model that enables viscosity prediction off an optimized structure
- Perform comprehensive solvent property testing using ΔPVT cell
Reduced Model Is Qualitatively Predicting Viscosity From Optimized Structures

\[X = \frac{q_N q_O}{r_{NO}} - \frac{q_O q_H}{r_{OH}} \]

\[P_{int} = c_1 X + c_2 \]

\[\eta = c_1 \ln \left(\frac{P_{int}}{1 - P_{int}} \right) \exp (c_2 L) \]

\(\eta \): viscosity
\(P_{int} \): percent internal hydrogen bond, calculated as a function of \(X \)
\(L \): mol percent CO\(_2\) loading
\(c_1 \) & \(c_2 \): constants to obtain the viscosity magnitude in cP, varied to fit the experimental data for at 0 and 25 mol\% CO\(_2\)
PNNL’s Custom ΔPVT Cell Enables Rapid Screening

*Standardized Measurements on ~40 mL scale

PT capability matches VLE

- Flow-through viscometer measures cP as a function of CO₂ loading
- Miniaturized wetted wall contactor can extract qualitative kg·m² data

Figure 1:
- **Left graph:** Viscosity (cP) vs. Loading α_CO₂ (mol/mol-solvent)
- **Right graph:** Mass flow rate (kg·m²/s·Pa⁵) vs. Loading (mol-mol CO₂/mol solvent)
Applying Molecular Design Towards CO₂BOL Cycle-2

What we learned from Cycle-1:

- High degree of internal hydrogen bonding
- Ether groups for cation charge solvation
- Potential for neutral capture

Viscosity Modifying Factors:

- Fine tuned electronics for acid/base equilibria
- Steric crowding to reduce stacking

Electronic Effects

\[
\begin{align*}
R_2 & \sim N & N & - R_3 \\
X & & X_1 & \sim \text{OH}
\end{align*}
\]

X and \(X_1 = F, \text{Cl, CF}_3, \text{(EWG)}\) or \(\text{OMe, CH}_2\text{NMe}_2, \text{(EDG)}\) and \(R_2=R_3=\text{Me}, \text{CF}_3, \text{CF}_3\text{CF}_2, \text{OMe with } n=1, 2, 3\)

Steric Effects

\[
\begin{align*}
R & \sim N & N & - R_3 \\
R_1 & \sim \text{OH}
\end{align*}
\]

\(R=\text{Pr, } i-\text{Pr, Bu, } t-\text{Bu}\)
\(R_1=\text{Me, Et, } i-\text{Pr with } n=1, 2, 3\)
Reduced Model Predicts ~90% Reduction for Multiple Derivatives (@ 25 mol% CO₂)

- **Reduced Model Predicts ~90% Reduction for**
- **Multiple Derivatives (@ 25 mol% CO₂)**

<table>
<thead>
<tr>
<th>Compound</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>275</td>
<td>94,139</td>
</tr>
<tr>
<td>228</td>
<td>170</td>
</tr>
<tr>
<td>111</td>
<td>146</td>
</tr>
<tr>
<td>36</td>
<td>13</td>
</tr>
<tr>
<td>n/a, 14</td>
<td>33</td>
</tr>
<tr>
<td>29</td>
<td>n/a</td>
</tr>
<tr>
<td>14</td>
<td>145</td>
</tr>
<tr>
<td>198</td>
<td></td>
</tr>
</tbody>
</table>

IPADM-2- BOL = 150 cP
Synthesis & Testing of Cycle-2 Derivatives Confirms Significant Viscosity Reduction

- Synthesizing 4 variants of MEIPADM-2-BOL with ether and isopropyl moieties
 - 90% reduction predicted @ 25 mol% CO₂, 40 °C
- BEIPADIPA-2BOL currently being scaled up for testing

IPADM-2-BOL @ 40 mol% CO₂
MEIPADM-2-BOL @ 35 mol% CO₂
BEIPADIPA-2-BOL @ 42 mol% CO₂

Malhotra et al., Manuscript In Preparation
Integrating Molecular Design, Synthesis & Testing For Aminosilicone Solvents

Collaboration with GE Global Research
All Non-Aqueous Solvents May Have “Heterogeneous” Molecular Structure

CO₂BOL Solvent Class: (100% Concentrated)

- Different solution and interfacial properties
- Changes as a function of CO₂ loading

Aminosilicone Solvent Class: (Triethylene Glycol co-Solvent)

- TEG may not be dissolving GAP carbamates
- Potential for different co-solvent

Heterogeneous Molecular Structure May Account for Similar Materials Performance

- CO₂BOLs and aminosilicones show similar predicted solvent structure and viscosity profiles as a function of CO₂ loading.

Mass Transfer of GAP-1/TEG is Inverse With Temperature

- Inverse k_g with temperature observed
 - Similar to IPADM-2-BOL1
- Follows trend of physical solubility of CO$_2$ driving liquid-stage kinetics

Mass Transfer of GAP-1/TEG is Greater Than MEA & Piperazine

- k_g' of GAP-1 is twice that of 8 m PZ and 6 times that of 9 m MEA
- 100 Pa of P^*_{CO2} at 40 °C
- Non-aqueous k_g' values larger at higher solution viscosities

Strategies of Refinement of GAP-1 Derivatives

GAP-1/TEG shows enhanced kinetics compared to aqueous solvents though viscosity can still be lowered

Near Term
- Identify co-solvents that dissolve ionic clusters
- Identify potential diluents to breakup ionic clustering

Long Term
- Apply findings from CO₂BOL solvent class to refine GAP derivatives
 - Promote internal H-bonding
 - Add ether groups for charge solvation
 - Increase steric bulk
 - Optimize acid/base equilibria
Benefits of Technology to the Program

- An approach that can benefit all solvent classes
- Rapid modeling and testing of all CO₂ binding mechanisms
- Detailed understanding of molecular level interactions and how they impact performance

<table>
<thead>
<tr>
<th>Property</th>
<th>Alkylcarbonate-Derived</th>
<th>Carbamate-Derived</th>
<th>Imidazole-Derived</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(CO₂BOLs)</td>
<td>(RILs, Aminosilicones, TSILs, Phase-Change)</td>
<td>(imidazole, carbene, AHA ILs)</td>
</tr>
<tr>
<td>Internal H-Bonding</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molecular Stacking</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steric Crowding</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimized Thermochemistry</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quantify (k_g)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

KEY
- Current Work
- Projected Translation
Next Steps: FY17 Work Scope

Three parallel efforts at each level of testing and development

Solvent Class #3
Molecular Development
Cycle 1

Development of model
Initial solvent screen

Aminosilicone
Molecular Development
Cycle 2

Molecular-level refinement
Reduce viscosity by up to 90%

CO₂BOL/PSAR
Continuous Flow
Testing for TEA

Validate performance
$40/ton CO₂ target
Acknowledgements

Funding: US Department of Energy Office of Fossil Energy FWP 65872

Andy Aurelio, Lynn Brickett, John Litynski

Advisory process engineering, thermodynamics:
Dr. Paul M. Mathias

Dr. Phillip Koech
Solvent Design
Retrosynthetic-analysis
Synthesis & Scaleup

Dr. Vanda Glezakou
Dr. Roger Rousseau
Computational Modeling
Physical property projections

Dr. Feng Zheng
Process Modeling
Performance Projections

Dr. Deepika Malhotra
Dr. David Cantu
Greg Whyatt
Charles Freeman
Andy Zwoster
Mark Bearden

Advisory process engineering, thermodynamics:
Dr. Robert Perry
Tiffany Westendorf
Benjamin Wood

Dr. Josh Stohlaroff,
Dr. John Vericella

Abhoyjit Bhown
Revised Synthetic Pathway and Cost for Optimal Derivative May Achieve Cost Targets

- IPADM-2-BOL costs $407/kg, but projected $35/kg at tonnage scale

![Chemical reaction diagram]

- BEIPADIPA-2-BOL costs $168/kg, but projected at $12/kg at tonnage scale

*Cost target is $10/kg
Aqueous solvents have a reactive interface, a diffusion film, then bulk liquid.¹

CO₂BOLs have a diffusion film (passivated interface) followed by a reaction film, then bulk liquid.²

Potential new diffusion routes and mechanisms of CO₂ and CO₂-containing ions

Different contactor or packing may be needed New film theories needed to quantify this behavior

Utilizing A Heterogeneous Solvent
-Collaboration With CCSI

- Gradient packing to adjust to changing fluid
 - Changes in fluid properties: contact angle, surface tension and viscosity
 - Changes in packing: Structured to random, packing material

Image taken from: http://www.wes-worldwide.com