Project Review: Bench Scale Testing of Next Generation Hollow Fiber Membrane Modules

August 11, 2016
A. Augustine, R. Gagliano, S. Fu, D. Hasse, S. Kulkarni, D. Kratzer, M. Bennett | R&D
J.-M. Gauthier | MEDAL

Award: DE-FE0026422

AIR LIQUIDE
Air Liquide: world leader in industrial and medical gases
68,000 employees
$18.1 billion sales (2015)

Air Liquide & MEDAL

Air Liquide Advanced Separations, MEDAL

N₂ applications / markets
- OBIGGS
- Maritime
- Food & Bev
- UB Oil Drilling
- CB Inerting

H₂ applications / markets
- HDT
- HCR/RDS
- CR
- CCR
- OPAL (C₂ cracker)
- GTL (CO/H₂ adj)
- MeOH
- Syngas (CO/H₂ adj)
- CO (coldbox)
- NH₃

CO₂ applications / markets
- NG Sweetening
- EOR
- NG Trimming
- Fuel Gas
- Biogas

CO₂ Capture / CO₂ Sourcing
Outline

➢ Project Overview

➢ Technology Background
 ➢ Process design
 ➢ PI-2 novel material

➢ Project Details / Progress
 ➢ Equipment set-up
 ➢ Formulation development
 ➢ Manufacturing development
 ➢ Acid gas tolerance
 ➢ Hybrid process analysis

➢ Conclusions & Future Work
Motivation: Increase Membrane Productivity

PI-1 commercial product
- 1,000’s of modules per year, dozens of applications
- Performance improves at low temp

PI-2 novel material
- Thin film properties near Robeson* upper bound
- Spinnable
- Performance at lab-scale over 500+ hours

*Robeson, J. Membr. Sci. 2008(320), 390-
Motivation: Increase Membrane Productivity

PI-1 commercial product
- 1,000's of modules per year, dozens of applications
- Performance improves at low temp

PI-2 novel material
- Thin film properties near Robeson* upper bound
- Spinnable
- Performance at lab-scale over 500+ hours

Feed: 1800+ Nm³/h (0.6 MWe eq.)
18% CO₂, 200 psig, -45°C

12” OD x 34” L
(1 module, projected performance)

Permeate: >58% CO₂
(~1 psig)

Residue: <1.8% CO₂
(~190 psig)

*Robeson, *J. Membr. Sci.* 2008(320), 390-
Project Objectives

Objectives (Success Criteria):

- Design/manufacture 4” bundle(s)
 - >90 Nm³/h feed @ 90% CO₂ recovery, >58% CO₂ purity
- Identify other hybrid processes with possibility of economic feasibility

- Design/manufacture 6” bundle(s)
 - >400 Nm³/h feed @ 90% CO₂ recovery, >58% CO₂ purity
 - Manufacture at least one 12” bundle
- Field-test 6” bundles at 0.3 MWe scale with real flue gas at NCCC
- Techno-economic analysis achieving >90% CO₂ capture at a cost of electricity 30% less than DOE baseline

Total Budget - $3.98 MM (25% cost share), 9.4 man-years total

Partners – DRTC, MEDAL, and Parsons
Technology Background: Process Concept

- 2010 – 2012 DOE: DE-FE0004278
- Cold membrane hybrid process
- PI-1: synthetic flue gas (TRL 4)
- Techno-economic analysis

- Energy recovery by turbo-expansion and cold production
- Energy integration
- BFW generation
- Pumping liquid CO₂

![Diagram of the process concept]

- Power plant
- Flue gas pre-treatment and compression
- Cryogenic Heat Exchanger
- Low temperature Membrane System (bulk CO₂ removal)
- CO₂ Liquefier (Increase product purity)
- CO₂ depleted retentate
- Off-gas recycle
- Enriched permeate: 58%+ CO₂
- Liquid CO₂
2013 – 2016 DOE: DE-FE0013163
- 2x12” PI-1 bundles, real flue gas
- TRL 5 (PI-1)
- Techno-economic analysis

Projected CO₂ capture cost 42 - 48$/tonne (DOE Target – 40$/tonne of CO₂)

Areas of improvement:
- Reduce membrane cost – improve membrane performance
- Reduce pre-treatment / compression costs, lower operating pressure
Technology Background: PI-2 Fiber Development

- 2013 – 2016 DOE: DE-FE0013163
- 1” PI-2 modules (500+ fibers)
- TRL 4 (PI-2)

- PI-2 lab-scale spinning methodology
- 1” OD modules (500 fibers) achieved good performance in real flue gas

Graph:
- PI-2 Permeance Normalized with PI-1
- CO2 Purity

- 70% CO2 Recovery
- Feed Composition 19% CO2 in N2
- Feed Temperature -45°C
- Feed Pressure 100 - 200 psig
Outline

- Project Overview
- Technology Background
 - Process design
 - PI-2 novel material
- Project Details / Progress
 - Formulation development
 - Manufacturing development
 - Equipment set-up
 - Acid gas tolerance
 - Hybrid process analysis
- Conclusions & Future Work
Project Milestones & Dates

<table>
<thead>
<tr>
<th>BP #</th>
<th>Expected</th>
<th>Milestone</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP1</td>
<td>03-31-2016</td>
<td>Complete prototype manufacturing setup and initiate 4” bundle fabrication</td>
</tr>
<tr>
<td></td>
<td>12-31-2016</td>
<td>Complete prototype bundle testing: >90 Nm³/hr productivity @ 18% CO₂, 16 bar, 90% CO₂ recovery, and >58% CO₂ permeate composition</td>
</tr>
<tr>
<td></td>
<td>03-31-2017</td>
<td>Complete verification of PI-2 flue gas contaminant testing</td>
</tr>
<tr>
<td></td>
<td>03-31-2017</td>
<td>Complete hybrid process analysis comparing different applicable process schemes</td>
</tr>
</tbody>
</table>

GO/NO-GO Decision

<table>
<thead>
<tr>
<th>BP2</th>
<th>Expected</th>
<th>Milestone</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>03-31-2018</td>
<td>Complete PI-2 commercial bundle fabrication and testing: >400 Nm³/h productivity @18% CO₂, 16 bar, 90% CO₂ recovery, and >58% CO₂ permeate composition</td>
</tr>
<tr>
<td></td>
<td>01-31-2018*</td>
<td>Complete installation and commissioning of the 0.3 MWe field-test unit at NCCC</td>
</tr>
<tr>
<td></td>
<td>09-30-2018*</td>
<td>Complete 0.3 MWe field-testing including parametric testing and at least 500 hours for one membrane</td>
</tr>
<tr>
<td></td>
<td>09-30-2018*</td>
<td>Techno-economic analysis of CO₂ capture at 550 MWe net AFPC plant using cold membrane technology</td>
</tr>
<tr>
<td></td>
<td>09-30-2018*</td>
<td>Environmental, Health, and Safety analysis of cold membrane technology at full scale</td>
</tr>
</tbody>
</table>
Polymer Formulation Development

Baseline

<table>
<thead>
<tr>
<th>Normalized Permeance</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-CO_2/N_2</td>
<td>>70</td>
</tr>
</tbody>
</table>

Alternate Formulations

<table>
<thead>
<tr>
<th>Normalized Permeance</th>
<th>5 - 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-CO_2/N_2</td>
<td>40 - 85</td>
</tr>
</tbody>
</table>

Performance Improvement

Cost Reduction

Alternate Formulations

| Normalized Permeance | 0.5 – 1.5 |

<table>
<thead>
<tr>
<th>Dope 1</th>
<th>Blend A</th>
<th>Blend B</th>
<th>Blend C</th>
<th>Blend D</th>
<th>Blend E</th>
<th>Blend F</th>
<th>Blend G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neg</td>
<td>Neg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dope 2</td>
<td></td>
<td>Neg</td>
<td>Pos</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dope 3</td>
<td></td>
<td>Pos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dope 4</td>
<td></td>
<td></td>
<td>Neg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dope 5</td>
<td></td>
<td></td>
<td></td>
<td>Neg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dope 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Neg</td>
<td></td>
</tr>
<tr>
<td>Dope 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pos</td>
<td></td>
</tr>
</tbody>
</table>
Manufacturing Development

<table>
<thead>
<tr>
<th>Device</th>
<th>OD (in)</th>
<th>Length (ft)</th>
<th>Fiber Count</th>
<th>Spinning Device</th>
<th>Fabrication Technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mini permeator</td>
<td>0.25 - 0.5”</td>
<td>1.6’</td>
<td><1000</td>
<td>1-hole lab unit</td>
<td>Hand</td>
</tr>
<tr>
<td>Permeator</td>
<td>1”</td>
<td></td>
<td>1 – 5x</td>
<td></td>
<td>Skein</td>
</tr>
<tr>
<td>Skein module</td>
<td>2.5”</td>
<td></td>
<td>15 – 20x</td>
<td>12-hole “DSU”</td>
<td>Forming</td>
</tr>
<tr>
<td>R&D prototype bundle</td>
<td>2.5 - 4”</td>
<td>2.8’</td>
<td>15 – 20x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6” bundle (commercial)</td>
<td>6”</td>
<td></td>
<td>50 – 90x</td>
<td>24/36-hole production unit</td>
<td></td>
</tr>
<tr>
<td>12” bundle (commercial)</td>
<td>12”</td>
<td></td>
<td>>200x</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Spinning Equipment (DSU)
- Spinning
- Post-spin handling

Fiber Processing / Handling
- Washing
- Drying
- Bobbin winding

Forming Equipment
- Tube-sheet forming
- Machining
Demonstration Scale Fiber Synthesis Equipment

Dry jet wet quench fiber spinning

12-filament Development Spin Unit

Liquid Bore Fluid
Spin Dope
Spinneret
Quench Bath

2-gallon mixer
15-gallon mixer

Batches of fiber
MEDAL manufacturing equipment for processing
Fiber Synthesis & Handling Damage

- Minor selectivity loss due to bobbin winding: minor handling damage
- No selectivity loss due to forming: little or no further handling damage

Samples taken and quality tested at ambient temperature

Normalized CO₂ Permeance ($P_{CO₂}/P_{CO₂,PI-1}$)

<table>
<thead>
<tr>
<th>Sample</th>
<th>CO₂ Permeance</th>
<th>CO₂/N₂ Selectivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI-1 Bobbin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI-1 Formed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI-2 As Spun</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI-2 Bobbin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI-2 Formed</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fiber Synthesis & Bundle Forming

1.9 lbs of PI-2 fiber synthesized on the DSU over 3 hours

Periodic samples for quality control:

<table>
<thead>
<tr>
<th>Sample #</th>
<th>Normalized CO₂ Perm</th>
<th>CO₂/N₂ Selectivity</th>
<th>Fiber ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13.1</td>
<td>27.8</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>11.7</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>14.3</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>11.0</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>13.2</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>9.4</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>12.1</td>
<td>29.1</td>
<td></td>
</tr>
<tr>
<td>Std Dev</td>
<td>11.6%</td>
<td>14.7%</td>
<td>3.6%</td>
</tr>
</tbody>
</table>

• Fiber performance was consistent and agreed with previous lab-scale results

• Fiber “formed” into two prototype bundles (to be tested at 0.1 MWe skid at DRTC)
Acid Gas Contaminant Testing

Fiber samples in three mini-permeators simultaneously exposed to 100 ppmv NO and SO\textsubscript{2} over two weeks

- Stable / slightly increasing permeance for all samples
- Stable selectivity for all samples
- No apparent effect of NO or SO\textsubscript{2} on the PI-2 fiber
- Still to do: 100 ppmv NO\textsubscript{2} (not stable in combination with NO & SO\textsubscript{2})
Air Liquide’s Unique Position on CO₂

Technology for the whole range of CO₂ feed and product purities from any CO₂ source
Hybrid Process Schemes

Membrane operated at 60 – 80% recovery

Second capture process to reach 90%+

<table>
<thead>
<tr>
<th>Specific Energy* [kW-h/tonne]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
</tr>
<tr>
<td>284</td>
</tr>
</tbody>
</table>

*CO₂ capture only
Hybrid Process Schemes (Cold Membrane + Amines)

Reboiler duty ~ CO₂ mass flow

Membrane @ 75% recovery

60% lower bundle count!

Amine system for 90%+ recovery

<table>
<thead>
<tr>
<th></th>
<th>Specific Energy* [kW-h/tonne]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>284</td>
</tr>
<tr>
<td>With Amines</td>
<td>402</td>
</tr>
</tbody>
</table>

*CO₂ capture only
Hybrid Process Schemes (Cold Water)

Direct contact towers for flue gas cooling

Very dry residue gas

<table>
<thead>
<tr>
<th></th>
<th>Specific Energy* [kW-h/tonne]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>284</td>
</tr>
<tr>
<td>Cold Water</td>
<td>267</td>
</tr>
</tbody>
</table>

*CO₂ capture only
Conclusions & Future Work

Conclusions
- Prototype bundles fabricated (awaiting testing)
- Fiber tolerance towards NO and SO$_2$ demonstrated
- Hybrid processes modeled

Future Work (present to Mar ‘17)
- Prototype bundle fab / test
- Hybrid process development

Budget Period 2 (Apr ‘17 to Sept ‘18)
- Manufacturing scale-up (6” and 12” bundles)
- Field-test at NCCC (0.3 MWe unit)
- Techno-economic analysis
Acknowledgments / Disclaimer

- US DOE: José Figueroa, Sheldon Funk
- NCCC: Frank Morton, Tony Wu
- Parsons: Brad Knutson
- Air Liquide: Rob Gagliano, Shilu Fu, Sudhir Kulkarni, Dave Hasse, Dean Kratzer, Dave Edwards, Jean-Marie Gautier

Some material in this presentation is based on work supported by the Department of Energy National Energy Technology Laboratory under Award Number DE-FE0004278 (completed), DE-FE0013163, and DE-FE0026422.

“This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.”
Research & Development

Opening new ways

THANK YOU FOR YOUR ATTENTION