Robust and Energy Efficient Dual Stage Membrane Based Process for Enhanced CO$_2$ Recovery

DE-FE0013064

Dr. Richard J. Ciora, Jr, Media and Process Technology Inc.

- Dr. Paul KT Liu, Media and Process Technology Inc., Pittsburgh, PA
- Professor Theo T. Tsotsis, University of Southern California, Los Angeles, CA
- Dr. Eric C. Wagner, Technip Stone & Webster Process Technology, Inc., Morovia, CA

U.S. Department of Energy
National Energy Technology Laboratory
Strategic Center for Coal’s
FY15 Carbon Capture Peer Review
March 16-20, 2015
Overall Theme:

• Use inorganic membrane technology advantages to achieve CCS goals.
• Move inorganic membrane technology from lab scale novelty to commercial reality.

Overall Project Objectives:

1. Demonstrate the carbon molecular sieve membrane as a bulk H₂ separator and to improve the efficiency of the WGS reactor

2. Demonstrate the Pd-alloy membrane for residual H₂ recovery from “captured” high pressure CO₂

3. Perform bench scale testing (equivalent to a syngas throughput for 0.01MWe power generator) of the innovative pre-combustion process scheme for power generation with CO₂ capture and sequestration (CCS).

4. Key process components will be tested under simulated and real gasifier syngas conditions for their potential to effectively separate H₂ and CO₂.

5. Collected data will be utilized to assess the potential of the concept for achieving the DOE Carbon Capture Program goal.
M&P Dual Stage Membrane Process

Project Overview

Funding: Overall project budget: $2.5MM including $500,000 (20%) cost share

Overall Project Performance Dates: October 1, 2013 - September 30, 2016

Project Participants:
- Media and Process Technology…Membrane manufacturer/supplier and technology developer
- University of Southern California…Membrane reactor testing, membrane model development
- Technip Stone and Webster Process Technology Inc…Engineering and system design, analysis and economics
CMS Membrane (coupled with WGS reactor)

1. Deliver enhanced CO conversion with reduced water consumption versus conventional WGS.
2. “Roughing” step to recover the bulk H₂ and reduce load on the CGCU.
3. Ideal location for CMS membrane due to its material and temperature stability.

Pd-Alloy Membrane

1. High selectivity yields excellent residual H₂ recovery.
2. Ideal to achieve the CO₂ capture and purity targets.
TECHNOLOGY BACKGROUND

Multiple Tube Membrane Bundles – versatile, low cost

Our Core Expertise/Technology

#1: Packaging individual membrane tubes into commercially viable modules for field use.
TECHNOLOGY BACKGROUND

Specific thin film deposition for advanced separations

Importantly Features of MPT Inorganic Membranes

• Low cost commercial ceramic support
• High packing density, tube bundle
• Module/housing for high temperature and pressure use

Our Core Expertise/Technology

#2: Thin film deposition on less-than desirable but low cost porous tubular substrates
TECHNOLOGY BACKGROUND

Membrane Bundles for Separations at High Temperature and Pressure

Multiple Tube Bundle Styles

Dense Ceramic Tube Sheet (DCT-style)
- Performance: >500°C; >1,000 psig
- Packing: 57-tube current and 71-prototypes, spaced pack

Potted Ceramic Glass (PCG-style)
- Performance: ~300°C; <450 psig
- Packing: 86-tube, close pack

Common Features

- CMS Membrane
- Pd-alloy Membrane

Glass Transition Zone

Dense alumina “tips” for Candlefilter
Our Innovation

- **CMS membrane to enhance CO conversion efficiency with concomitant bulk H₂ recovery** to improve power generation efficiency.

- **Pd-alloy membrane for residual H₂ recovery** during the post compression of CO₂ for CCUS to achieve the CO₂ capture goals and fuel efficiency requirements.

Unique Advantages

- **No syngas pretreatment required.** CMS membrane is stable in all of the gas contaminants associated with coal derived syngas.

- **Improved CO conversion efficiency and bulk H₂ separation.** Separation of hydrogen as well as enhanced CO conversion from the raw syngas occurs at elevated temperatures at reduced steam requirement for the WGS reaction.

- **Reduced Gas Load to CGCU:** The proposed use of the CMS membrane with the WGS reactor results in substantial hydrogen and steam recovery, resulting in reduced stream size for the CGCU.

- **CCS Post Compression Power Reduction:** CO₂-enriched gas is delivered to the CGCU at relatively high pressure reducing total compression load.

- **Enhanced residual H₂ recovery from the CCS stream to achieve the CO₂ recovery goals.** The Pd-alloy membrane is ideally suited to remove residual H₂ from the CCS stream to deliver the CO₂ purity and capture targets.
Our Solutions to the Well-known Deficiencies of A Membrane Process

• **Bulk Separation Limitation**… Membranes are generally intended for bulk separation, usually not very efficient for fine separations. Our use of very high selectivity Pd-alloy membranes to supplement CMSM overcomes this deficiency to achieve the program goals.

• **High Cost of Pd Membranes**… Pd-based membranes are expensive and the worldwide supply is constrained considering commercially available technology. Our ceramic substrate and bundle designs permit thin films to overcome both of these problems.

• **Pd Membrane Stability**… The Pd-based membranes in this application is exposed to a H₂/CO₂ stream after CGCU. Thus, chemical stability of the membrane is not an issue.
BP1 Tasks Completed to Overcome Key Technical Challenges
• CMS/Pd membrane operation meeting targets for CO₂ sequestration and cost.
• Long term and other membrane performance stability
• Full-scale WGS-MR and membrane separator designs for mega-scale applications
• Updated membrane and membrane reactor modeling

BP2 Tasks Underway/Completed to Overcome Key Technical Challenges
• Performance stability in actual gas testing (NCCC) with multiple tube bundles.
• Model verification in actual gas testing with multiple tube bundles.
• Long term membrane performance stability.
• Process design and techno-economic evaluation.
• Environmental, health and safety assessment.
Project Technical Approach

Overview of Project Technical Approach - Workplan

<table>
<thead>
<tr>
<th>Budget Period 1</th>
<th>Budget Period 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task 1. Project Management and Planning</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 2. Establish Performance Database: Focus here is to complete the membrane performance database under more severe operating conditions in the presence of simulated WGS contaminants at long times. Also reactivate the bench top WGS-MR system for Task 3 activities.</td>
<td>Task 6. NCCC Field Testing: Focus here is testing at the NCCC of the two stage process for demonstration and operational stability.</td>
</tr>
<tr>
<td>Task 3. CMS WGS-MR experimental verification and modeling under extreme conditions: Focus here is lab scale testing of the CMS WGS-MR at gasifier conditions and includes model development/verification.</td>
<td>Task 7. Process Design and Engineering: Focus here is comprehensive process development and economic evaluation.</td>
</tr>
<tr>
<td>Task 4. Preparation of CMS for bench testing at NCCC: Focus here is design and fabrication of the pilot scale (86-tube bundles) for process evaluation at the NCCC.</td>
<td>Task 8. Conduct Environmental Health and Safety Analysis: Focus here is assessment of the environmental impact.</td>
</tr>
<tr>
<td>Task 5. Preparation of Pd Module for 2nd Stage H₂ Recovery for bench scale test at NCCC: Focus here is design and fabrication of the pilot scale Pd module.</td>
<td></td>
</tr>
</tbody>
</table>
Progress and Current Status of Project
Typical Performance and Performance Targets

CMS Single Tube Characterization

<table>
<thead>
<tr>
<th>CMS Membrane Characteristic</th>
<th>Preliminary Target to Achieve DOE Goals¹</th>
<th>Laboratory Single Tubes Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permeance, H₂ [GPU] @ 250°C, 20 psig</td>
<td>550</td>
<td>420 to 1,100</td>
</tr>
<tr>
<td>Selectivity, H₂/X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H₂/N₂</td>
<td>70</td>
<td>80 to >180</td>
</tr>
<tr>
<td>H₂/CO</td>
<td>70</td>
<td>70 to >130</td>
</tr>
<tr>
<td>H₂/CO₂</td>
<td>35</td>
<td>35 to >65</td>
</tr>
<tr>
<td>H₂/H₂S</td>
<td>N/A²</td>
<td>100 to 150²</td>
</tr>
<tr>
<td>H₂/H₂O</td>
<td>1.5</td>
<td>1.5 to 3</td>
</tr>
</tbody>
</table>

CMS 86-Tube Bundle Characterization

<table>
<thead>
<tr>
<th>CMS Bundle ID</th>
<th>He Permeance [GPU]</th>
<th>He/N₂ Selectivity [-]</th>
</tr>
</thead>
<tbody>
<tr>
<td>86-6</td>
<td>731</td>
<td>100</td>
</tr>
<tr>
<td>86-7</td>
<td>1,020</td>
<td>187</td>
</tr>
<tr>
<td>86-8</td>
<td>658</td>
<td>91</td>
</tr>
<tr>
<td>86-9</td>
<td>950</td>
<td>102</td>
</tr>
<tr>
<td>86-10</td>
<td>365</td>
<td>200</td>
</tr>
<tr>
<td>86-11</td>
<td>584</td>
<td>142</td>
</tr>
<tr>
<td>86-12</td>
<td>548</td>
<td>77</td>
</tr>
<tr>
<td>86-13</td>
<td>840</td>
<td>126</td>
</tr>
<tr>
<td>86-14</td>
<td>1,020</td>
<td>117</td>
</tr>
<tr>
<td>86-J1</td>
<td>973</td>
<td>120</td>
</tr>
<tr>
<td>86-MB1</td>
<td>421</td>
<td>122</td>
</tr>
<tr>
<td>86-MB2</td>
<td>665</td>
<td>87</td>
</tr>
<tr>
<td>86-MB3</td>
<td>438</td>
<td>85</td>
</tr>
</tbody>
</table>

Notes:
1. Target performance is that required to achieve 90% CO₂ capture at 95% purity with 95% fuel utilization (H₂ + CO to the turbine).
2. At this selectivity, approximately 200 ppm H₂S in the fuel to turbine.
Typical Performance and Performance Targets from Economic Analysis

Pd-Alloy Single Tube Characterization Overview

<table>
<thead>
<tr>
<th>Pd-Alloy Membrane Characteristic</th>
<th>Preliminary Target to Achieve DOE Goals¹</th>
<th>Laboratory Single Tubes Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permeance, H₂ [GPU] @ 350°C, 20 psig</td>
<td>3,470</td>
<td>1,750 to >5,500</td>
</tr>
<tr>
<td>Selectivity, H₂/X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H₂/N₂</td>
<td>300</td>
<td>300 to >3,000</td>
</tr>
<tr>
<td>H₂/CO</td>
<td>300</td>
<td>300 to >3,000</td>
</tr>
<tr>
<td>H₂/CO₂</td>
<td>300</td>
<td>300 to >3,000</td>
</tr>
<tr>
<td>H₂/H₂S</td>
<td>N/A²</td>
<td>NA²</td>
</tr>
<tr>
<td>H₂/H₂O</td>
<td>300</td>
<td>300 to >3,000</td>
</tr>
</tbody>
</table>

Notes:

1. Target performance is that required to achieve 90% CO₂ capture at 95% purity with 95% fuel utilization (H₂ + CO to the turbine).
2. Feed gas to the Pd-alloy membrane has been pretreated to remove residual sulfur species in the CGCU.

Pd-Alloy Comments

1. **Pd-Cu** offers thermal cycling stability and low temperature operational capability (>200°C).
2. **Pd-Ag** offers higher flux and selectivity but higher minimum operating temperature (>300°C).
PROGRESS: CMS Membrane Stability

Key Technical Hurdles Focused on Long Term Stability (CMS Membrane)

CMS 86 - Tube Bundle Long Term Stability (>16,000 hrs)

- He Permeance [GPU]
- He/N₂ Selectivity [-]
- Run Time [hours]

Part ID: Bundle CMS J-1
Temperature: 250°C
Pressure: 20 psig

Repack Bundle. Orings Failed
PROGRESS: CMS Membrane Stability

Key Technical Hurdles Focused on Long Term Stability (CMS Membrane)

300°C

- Part ID: Single Tube CMS 3x40-#11
- Temperature: 300°C
- Pressure: 20 psig

500°C

- Cool and repack part (graphite), retest at 250°C.

- Part ID: Single Tube CMS STD-#1
- Temperature: 500°C
- Pressure: 20 psig

High Temperature Excursions above the 250°C Design Temperature
PROGRESS: Pd Membrane Stability

Key Technical Hurdles Focused on Long Term Stability (Pd-alloy)

Pd-Alloy Pd-Ag (80/20) Long Term Stability (~24,000 hours)

- Temperature: 350°C
- Pressure: 20 psig

<table>
<thead>
<tr>
<th>Permeance [GPU]</th>
<th>Run Time [hours]</th>
</tr>
</thead>
<tbody>
<tr>
<td>10000</td>
<td>0</td>
</tr>
<tr>
<td>1000</td>
<td>5000</td>
</tr>
<tr>
<td>100</td>
<td>10000</td>
</tr>
<tr>
<td>10</td>
<td>15000</td>
</tr>
<tr>
<td>1</td>
<td>20000</td>
</tr>
<tr>
<td>0.1</td>
<td>25000</td>
</tr>
<tr>
<td>0.01</td>
<td>30000</td>
</tr>
<tr>
<td>0.001</td>
<td>35000</td>
</tr>
</tbody>
</table>

- H₂: PdAg-63
- H₂: PdAg-66
- N₂: PdAg-66
- N₂: PdAg-63
PROGRESS: CMS Membrane Bundle Stability

NCCC Testing: CMS Membranes Highly Stable in Coal Gasifier Syngas

Testing Parameters

Membrane
86-tube CMS

Operating Conditions
T~ 250 to 300°C
P~ 150 to 300 psig

Pretreatment
Particulate trap only, no other gas cleanup.

Composition
H₂ ~ 10 to 30%
CO ~ 10%
CO₂ ~10%
N₂,H₂O ~Balance

Trace Contaminants
NH₃ ~ 1,000ppm
Sulfur Species ~ 1,000ppm
HCl, HCN, Naphthalenes/Tars, etc.

NCCC Slip Stream Testing: No gasifier off-gas pretreatment

He or N₂ Test Conditions
Pressure: 20 to 50 psig
Temperature: 230 to 265°C

Performance stability of multiple tube CMS membrane bundles during H₂ recovery from NCCC slip stream testing. He and N₂ Permeances measured periodically during >400 hr test.
Results

1. **Good agreement with NCCC “once per day” water content determinations using our new reject and permeate water capture units.**

2. **Substantial water content variability outside this “once per day” window.**

3. **We now can determine accurate real time water composition in the membrane feed.**

NCCC Testing: Improve Prediction of Membrane Performance

In-situ real time water composition analysis required

Added water capture units prior to recent NCCC testing round.

Table: Water Content Analysis

<table>
<thead>
<tr>
<th>Time</th>
<th>WGS In</th>
<th>WGS Out</th>
<th>Perm</th>
<th>Reject</th>
<th>WGS Out [%]</th>
<th>MPT Water Collection Units</th>
<th>NCCC/MPT Water Closure</th>
<th>NCCC GC Dry Gas Mass Closure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td></td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Day 1</td>
<td>16.2%</td>
<td>8.5%</td>
<td>39.5</td>
<td>5.7%</td>
<td>8.8%</td>
<td>103.9%</td>
<td>105.1%</td>
<td>105.1%</td>
</tr>
<tr>
<td>Day 2</td>
<td>10.6%</td>
<td>6.7%</td>
<td>23.2</td>
<td>5.3%</td>
<td>6.5%</td>
<td>96.4%</td>
<td>101.7%</td>
<td>101.7%</td>
</tr>
<tr>
<td>Day 3</td>
<td>7.5%</td>
<td>2.5%</td>
<td>19.9</td>
<td>5.5%</td>
<td>6.6%</td>
<td>267.2%</td>
<td>99.5%</td>
<td>108.2%</td>
</tr>
<tr>
<td>Day 4</td>
<td>5.0%</td>
<td>1.7%</td>
<td>23.5</td>
<td>0.2%</td>
<td>1.6%</td>
<td>98.4%</td>
<td>102.3%</td>
<td>102.3%</td>
</tr>
<tr>
<td>Day 5</td>
<td>7.4%</td>
<td>2.7%</td>
<td>31.1</td>
<td>0.6%</td>
<td>2.6%</td>
<td>98.5%</td>
<td>103.0%</td>
<td>103.0%</td>
</tr>
</tbody>
</table>
PROGRESS: Membrane Performance Modeling

NCCC Testing: DCT-Style 57-tube CMS Membrane Bundle

Operating Conditions and Flow Rates

![Graph showing operating conditions and flow rates over time](graph.png)
Feed, Permeate and Reject H₂ Composition

Supplemental H₂ Added to Feed Gas
PROGRESS: Membrane Performance Modeling

NCCC Testing: DCT-Style 57-tube CMS Membrane Bundle

Verification of the Mathematical Model in Actual Gas Testing at the NCCC
Permeate Flow Rate: Predicted versus Actual

Run Time [hours]

Permeate Rate [cm³/min]

Ratio, Permeate Rate, Actual/Simulation [%]

Reset Membrane “Baffles”
PROGRESS: Membrane Performance Modeling

NCCC Testing: DCT-Style 57-tube CMS Membrane Bundle

Verification of the Mathematical Model in Actual Gas Testing at the NCCC
Permeate H_2 Content: Predicted versus Actual

Reset Membrane “Baffles”

H$_2$ Permeate Composition [%]

Run Time [hours]
Effect of Total Gas Feed Rate on Membrane Performance with Baffles

Ratio of Actual to Predicted Permeate Rates

- 80/20 He/N2 Mixture; Test 1 Minimal Baffles
- 80/20 He/N2 Mixture; Test 2
- 50/50 He/N2 Mixture; Test 4
PROGRESS: Techno-economic Analysis

Enhanced CO Conversion
98.1% (v. B5B at 97.4%)
With less steam consumption

CO₂ Capture: 90.7%
CO₂ Purity: 93.4%

Pd-alloy Membrane for Residual H₂ Recovery
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Case B5B*</th>
<th>Case MPT</th>
<th>Target</th>
<th>MPT vs B5B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon Capture</td>
<td>90.0%</td>
<td>90.72%</td>
<td>90%</td>
<td></td>
</tr>
<tr>
<td>CO₂ Purity</td>
<td>99.48%</td>
<td>93.4%</td>
<td>95%</td>
<td></td>
</tr>
<tr>
<td>H₂ in Fuel</td>
<td>99.98%</td>
<td>98.72%</td>
<td>NA</td>
<td>+1.8%</td>
</tr>
<tr>
<td>Net Power Production, MW</td>
<td>543</td>
<td>553</td>
<td>N/A</td>
<td>+1.8%</td>
</tr>
<tr>
<td>Cost of CO₂ Captured [$/tonne]</td>
<td>63.1</td>
<td>62.0</td>
<td>N/A</td>
<td>-1.7%</td>
</tr>
<tr>
<td>Cost of CO₂ Avoided [$/tonne]</td>
<td>91.6</td>
<td>87.8</td>
<td>N/A</td>
<td>-4.1%</td>
</tr>
<tr>
<td>COE no T&S [$/MWh]</td>
<td>135.4</td>
<td>134.0</td>
<td>N/A</td>
<td>-1.1%</td>
</tr>
<tr>
<td>Total as-spent Cost [$/kW]</td>
<td>4,782</td>
<td>4,639</td>
<td>N/A</td>
<td>-3.0%</td>
</tr>
</tbody>
</table>

Final Remaining Technical Issues

- Complete Bench Scale Field Testing at the NCCC with DCT-style bundle with updated flow distribution/baffles and model verification
- Conduct Bench Scale Field Testing at the NCCC with Pd-alloy bundle
- Conduct high pressure mixed gas H₂/CO₂ performance testing with Pd-alloy membrane
- Conduct Sensitivity Analyses on the Process Design and Economics (Impact of CO₂, H₂S, and other slow gas selectivity; Impact of WGS Operating Temperature; Introduction of RTI warm gas cleanup for H₂S removal)
- Complete the Environmental, Health, and Safety Evaluation
Summary and Conclusions

Key Findings to Date

• Database updates show that the capabilities of our CMS and Pd-alloy membranes meet or exceed the performance targets required to deliver the DOE CCS goals.
• The CMS (250°C) and Pd-alloy (350°C) membrane tubes and bundles (full ceramic) have been demonstrated to be stable in thousands of hours of thermal stability testing.
• The CMS membrane has been shown to be stable in various tests for hundreds of hours of exposure to synthetic and actual coal gasifier syngas with only particulate pretreatment.
• Extreme pressures to >1,000psig can be achieved with our DCT-style bundles making them suitable for the proposed IGCC with CO₂ capture environment.
• Modeling has been successfully used to predict membrane performance at the NCCC.
• The proposed membrane based IGCC with carbon capture process achieves the 90% CO₂ capture target at 93.7% purity, just under the 95% purity target. Sensitivity analysis is underway on the H₂/CO₂ selectivity to establish the minimum target.
• Net power production for the proposed process is 553MW, 1.8% above the NETL base case.
• Total capital cost for the proposed process is $32MM (3%) below the NETL base case.
END