Improvement of GE Power’s Chilled Ammonia Process using Membrane Technology

Large Pilot Scale Post Combustion CO$_2$ Capture
No. FE0026589
National Energy Technology Laboratory \ Department of Energy
August 9, 2016
Acknowledgement

This material is based upon work supported by the Department of Energy under Award Number DE-FE0026589.

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
Project Overview: Team

- **Host Site and Funding Partner**
 Technology Centre Mongstad (TCM)
 Bjorn-Erik Haugan

- **US. DOE NETL**
 Program Manager
 Steve Mascaro

- **Project Director**
 Barath Baburao

- **GE Power**
 Principal Investigator
 Dave Muraskin

- **GE Power**
 Technology Manager
 Sanjay Dube

- **Technical Consultants**
 - ElectroSep, Dr. Paul Parisi, Todd Larson
 - General Electric Power & Water, Alexander Gorman
 - OSMO: Jurgen Muller
 - Georgia Institute of Technology, Dr. Sankar Nair, Dr. Ryan Lively, Nikita Kevlich

- **GE Power**
 Project Manager
 Robert Harvey

- **GE Power**
 Procurement
 Bill Hubbard

- **TCM Site Operations Manager**
 Gerard Lombardo

© 2016, General Electric Company
Project Review Meeting Agenda

- Project Overview
 - Funding (DOE and Cost Share)
 - Overall Project Performance Dates
 - Project Participants
 - Overall Objectives
- Technology Background
- Technical Approach / Project Scope
- Progress and Current Status
 - Budget Period (length and cost)
 - Accomplishments
 - Performance levels achieved
- Future Testing / Development
Discussion Topics

<table>
<thead>
<tr>
<th>Project Overview</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology Background</td>
</tr>
<tr>
<td>Technical Approach / Project Scope</td>
</tr>
<tr>
<td>Progress / Current Status</td>
</tr>
<tr>
<td>Future Development / Testing</td>
</tr>
</tbody>
</table>
Project Background

- Utilize liquid-liquid membrane technology to improve General Electric’s Chilled Ammonia Process (CAP) CO₂ capture technology
 - Elimination of CAP liquid ammonium sulfate effluent stream
 - Reduction of CAP energy demand
 - Initial laboratory testing of concepts performed in a development program outside the scope of this work

Project Overview

- Perform Technical Economic Analysis of concepts and compare with DOE Baseline
- Perform Gap Analysis to assess development needs
- Provide Final Report to summarize findings
Project Overview

• Original Project Funding (DOE and Cost Share)

<table>
<thead>
<tr>
<th>Budget Period No.</th>
<th>Budget Period Start</th>
<th>Government Share $/$%</th>
<th>Recipient Share $/$%</th>
<th>Total Estimated Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10/01/2015</td>
<td>$922,709 (74.1%)</td>
<td>$322,933 (25.9%)</td>
<td>$1,245,642</td>
</tr>
<tr>
<td>Total Project</td>
<td></td>
<td>$922,709 (74.1%)</td>
<td>$322,933 (25.9%)</td>
<td>$1,245,642</td>
</tr>
</tbody>
</table>

• Overall Project Performance Dates
 – GAP Analysis 9/1/2016
 – Final Report 9/30/2016
Project Overview

• Phase I Overall Objectives (original)
 – Complete a preliminary techno-economic analysis (TEA) and technology gap analysis of membrane concepts for the Chilled Ammonia Process at a full scale 550 MW power generation facility to show the concepts have the potential to meet DOE’s desired cost and performance goals.
 – Complete a firm estimate of the costs and schedule needed to modify the existing large pilot facility at the host site.
 – Develop key project success criteria values and risks.

• Modification of membrane development program due to laboratory test results
 – Decision not to proceed with the Large Pilot Modifications and application for Phase II funding

• Phase I Overall Objectives (revised)
 – Complete a final Techno-Economic Analysis (TEA) and Technology Gap Analysis (TGA) of membrane concepts for the Chilled Ammonia Process at a full scale 550 MW power generation facility to show the concepts have the potential to meet DOE’s desired cost and performance goals.
 – Develop key project risks.
Discussion Topics

- Project Overview
- Technology Background
- Technical Approach / Project Scope
- Progress / Current Status
- Future Development / Testing
CAP Technology Background

Chilled Ammonia CO₂ capture

Flue Gas Cooling/conditioning

CO₂ Storage

CO₂ Compression

CO₂ Absorption

CO₂ Regeneration

CO₂

Heat exchangers Pumps Cooling

© 2016, General Electric Company
Technology Background

• Membrane Concepts for Development in the Chilled Ammonia Process
 – Concept 1: Elimination of CAP Ammonium Sulfate Byproduct and Reduction of Reagent Consumption
 – Concept 2: Reduction of CAP Ammonia Stripper Energy Using Membrane Technology
 – Utilize commercially available membrane systems
Technology Background

Concept Advantages

Membrane technology improvements include:

- Concept 1 Bipolar membrane electrodialysis
 - Elimination of CAP ammonium sulfate byproduct stream, costs for disposal or crystallization, concentration
- Concept 2 Membrane technology to reduce stripper energy using reverse osmosis
 - Reduction in CAP energy demand
 - Stripper duty can be reduced significantly.
 - Stripper and associated heat exchanger sizes can be reduced
- Overall reduction in cost of electricity as compared to DOE Baseline
Electrodialysis for Ammonium Sulfate Dissociation

- Benefits
 - Use of electrodialysis bipolar membrane to convert ammonium sulfate byproduct to process reagents
 - Reduction in sulfuric acid and ammonia reagent consumption
 - Elimination of ammonium sulfate byproduct stream (beneficial for locations where off-taker is not available).
 - Reduction in operating costs
 - Reduction in reagent (typical: anhydrous ammonia) storage on site
Benefits:

- Stripper feed ammonia levels are concentrated with reverse osmosis membrane separator resulting in reduced feed flow rate.
- Higher ammonia slip from the absorber is allowable.
- Absorber chiller duty can be minimized significantly.
- Stripper duty can be minimized significantly or eliminated resulting in specific steam energy.
- Stripper and associated heat exchanger sizes can be reduced by ~50%.
Technology Background
Membrane Improvement Concept 2

CO₂ Wash Bottoms using Reverse Osmosis

Benefits:
- Utilize reverse osmosis membrane technology to concentrate CO₂ wash bottoms stream
- Allows operation of the regenerator at lower pressure and higher ammonia emissions
- Allows lower pressure steam to regenerator

© 2016, General Electric Company
Technology Background

Research Leading to Award
Chilled Ammonia Process
Update on GE Power roadmap

GE Power
Vaxjö Sweden
0.25 MWth

We Energies Pleasant Prairie
USA - 5 MWth, Coal

EoN Karlshamn
Sweden - 5 MWth, Oil

AEP Mountaineer
USA - 58 MWth, Coal

TCM Mongstad
Norway - 40 MWth, Gas

Roadmap to commercialization, 90% CO₂ capture demonstrated
Technology Background
Bench Scale Electrodiagnosis Testing

- Bench-scale Testing
 - Bipolar membrane electrodiagnosis by ElectroSep
 - Membrane systems
 - Anode exchange membrane
 - Cathode exchange membrane
 - Bipolar membrane
 - Test program completed
 - Parametric test program using synthetic solutions
 - Results indicate initial membrane selection is feasible
 - Additional experience provided by GE Power & Water

Electrodialysis Test Unit
ElectroSep Test Facilities
Saint Lambert, Quebec
Technology Background
Preliminary Results Reverse Osmosis Testing

• Bench-scale testing at Georgia Institute of Technology
• High rejection, seawater membrane samples tested from multiple suppliers
• Cellulose acetate, polyamide membranes
• Synthetic feed solution (stripper feed)
 – Ammonia-CO₂ solution: 1.5 M NH₃ using ammonium bicarbonate.
• Higher osmotic pressure needed to achieve desired ammonia rejection performance, flux
• Further testing with high pressure membranes is required
Technology Background
Membrane Development Challenges

Concept 2

• Higher pressure Reverse Osmosis membranes required
 – Increase in power consumption, operating costs
 – Increased capital cost
 – Increased membrane replacement costs
 – Decreased economic attractiveness

• New Reverse Osmosis concept considered to utilize lower pressure membranes
 – Laboratory testing of concept is needed
 – Economic assessment of concept needed
 – Development program to be revised
Discussion Topics

- Project Overview
- Technology Background
- Technical Approach / Project Scope
- Progress / Current Status
- Future Development / Testing
Technical Approach / Scope

Project Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Date</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase 1 Technology Gap Analysis</td>
<td>September 1, 2016</td>
<td>September 1, 2016</td>
</tr>
<tr>
<td>Phase 1 Final Report</td>
<td>September 30, 2016</td>
<td>September 30, 2016</td>
</tr>
</tbody>
</table>
Discussion Topics

- Project Overview
- Technology Background
- Technical Approach / Project Scope
- Progress / Current Status
- Future Development / Testing
Progress of Project
Project Schedule & Key Milestones

- Large Pilot Accomplishments
 - Heat and Material Balances
 - Membrane estimates
 - Initial plant layout developed
 - Project discontinued

- Technical economic analysis
 - Submitted for review
 - Cost of electricity improvement from Baseline
 - Improvement not sufficient to proceed with existing design at large pilot

<table>
<thead>
<tr>
<th>Milestone Description</th>
<th>Planned Start Date</th>
<th>Actual Start Date</th>
<th>Completion Date</th>
<th>Verification Method</th>
<th>Commitment (progress toward achieving milestone, explanation for deviation from plan, etc.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kick-Off Meeting</td>
<td>1/10/2015</td>
<td>1/10/2015</td>
<td>Meeting</td>
<td>Effort discontinued. No phase 2 application will be submitted</td>
<td></td>
</tr>
<tr>
<td>Updated Project Schedule</td>
<td>1/10/2015</td>
<td>1/10/2015</td>
<td>Presentation</td>
<td>Done</td>
<td></td>
</tr>
<tr>
<td>Updated Project Management Plan</td>
<td>9/15/2015</td>
<td>NA</td>
<td>Report File</td>
<td>Effort discontinued. No phase 2 application will be submitted</td>
<td></td>
</tr>
<tr>
<td>Steam Cycle Simulations for TEA</td>
<td>11/30/2015</td>
<td>12/15/2015</td>
<td>Report File</td>
<td>Done</td>
<td></td>
</tr>
<tr>
<td>PFD & Block Flow diagram 550 MW TEA</td>
<td>11/30/2015</td>
<td>11/20/2015</td>
<td>Report File</td>
<td>Done</td>
<td></td>
</tr>
<tr>
<td>PFD & Block Flow diagram 15 MW Pilot</td>
<td>12/15/2015</td>
<td>12/17/2015</td>
<td>Report File</td>
<td>Done</td>
<td></td>
</tr>
<tr>
<td>Data Sheet for 15 Mw skills (1 each concept)</td>
<td>12/30/2015</td>
<td>12/17/2015</td>
<td>Report File</td>
<td>Done</td>
<td></td>
</tr>
<tr>
<td>Equipment Summary Sheet 550 MW</td>
<td>11/15/2015</td>
<td>6/30/2016</td>
<td>Report File</td>
<td>Done</td>
<td></td>
</tr>
<tr>
<td>RFQ Skills 15 MW</td>
<td>1/4/2016</td>
<td>NA</td>
<td>Report File</td>
<td>Effort discontinued. No phase 2 application will be submitted</td>
<td></td>
</tr>
<tr>
<td>Vendor Engineering Skills complete 15 MW</td>
<td>2/28/2015</td>
<td>NA</td>
<td>Report File</td>
<td>Done</td>
<td></td>
</tr>
<tr>
<td>Cost of Electricity for TEA-550 MW</td>
<td>3/1/2016</td>
<td>6/30/2016</td>
<td>Report File</td>
<td>Done</td>
<td></td>
</tr>
<tr>
<td>Phase 2 Schedule</td>
<td>2/29/2016</td>
<td>NA</td>
<td>Report File</td>
<td>Effort discontinued. No phase 2 application will be submitted</td>
<td></td>
</tr>
<tr>
<td>Phase 1 EHS Preliminary assessment</td>
<td>2/29/2016</td>
<td>NA</td>
<td>Report File</td>
<td>Effort discontinued. No phase 2 application will be submitted</td>
<td></td>
</tr>
<tr>
<td>Topical Report with Itemized Cost Summary for Phase 2</td>
<td>3/31/2016</td>
<td>NA</td>
<td>Presentation</td>
<td>Effort discontinued. No phase 2 application will be submitted</td>
<td></td>
</tr>
<tr>
<td>Updated PMR for Phase 2</td>
<td>3/31/2016</td>
<td>NA</td>
<td>Report File</td>
<td>Effort discontinued. No phase 2 application will be submitted</td>
<td></td>
</tr>
<tr>
<td>Application for Renewal (write-up) Phase 2</td>
<td>3/31/2016</td>
<td>NA</td>
<td>Presentation</td>
<td>Effort discontinued. No phase 2 application will be submitted</td>
<td></td>
</tr>
<tr>
<td>Executed Financial Arrangements</td>
<td>6/30/2015</td>
<td>NA</td>
<td>Report File</td>
<td>Effort discontinued. No phase 2 application will be submitted</td>
<td></td>
</tr>
<tr>
<td>Executed Site Host Agreements</td>
<td>6/30/2015</td>
<td>NA</td>
<td>Report File</td>
<td>Effort discontinued. No phase 2 application will be submitted</td>
<td></td>
</tr>
<tr>
<td>GOING GO for Phase 2</td>
<td>6/30/2015</td>
<td>NA</td>
<td>Notification</td>
<td>Effort discontinued. No phase 2 application will be submitted</td>
<td></td>
</tr>
<tr>
<td>Notification of Phase 2 Award</td>
<td>8/31/2016</td>
<td>NA</td>
<td>Notification</td>
<td>Effort discontinued. No phase 2 application will be submitted</td>
<td></td>
</tr>
</tbody>
</table>
Progress of Project Techno-Economic Analysis

- Plant layout
- Capital cost estimate
- Construction costs
- Power generation facility costs
- Steam cycle and steam / water integration
- TEA submitted for review
Techno-Economic Analysis Results

• Comparison to DOE Baseline (Case 12)
 – Improvement in power plant steam cycle efficiency
 – Decrease in total overnight costs
 – Reduction in cost of electricity (CoE) from the DOE baseline
 – **Performance**: degree of CoE improvement not sufficient to justify further development of the original Concept 2 Reverse Osmosis
 – New Reverse Osmosis membrane concept developed using low pressure membranes: expected to improve capital and operating costs, CoE
Technology Gap Analysis

Technology areas considered in this project and the respective gaps are listed below

<table>
<thead>
<tr>
<th>Technology area</th>
<th>Current R&D status</th>
<th>Technology Gap and R&D plan</th>
</tr>
</thead>
</table>
| Chilled Ammonia Process without membranes | Tested at different pilot scales and ready for large scale testing | • Ammonium sulphate removal where no market takers
• Stripper energy consumption optimization
• NH$_3$ volatility reduction in absorber |
| Electro-dialysis unit | Tested at pilot scale in batch mode and ready for large pilot scale testing | • Potential for impurity interferences: test using power plant solutions
• Scale-up to full scale sizes |
| Reverse osmosis membrane separation | Tested at bench scale and ready for pilot scale testing | • Low pressure membranes can only be used with modified process flow scheme
• New process flow scheme with low pressure membranes has to be validated at bench and pilot scale
• High pressure membranes are not cost effective and are currently with low lifetime |

- Technology Gap Analysis Report is due September 1st, 2016
- Initial Gap Analysis draft completed: internal review
Progress Summary

• Techno-Economic Analysis Submitted on June 30, 2016
• Gap Analysis to be submitted September 1, 2016
• Final Report (summary of TEA & Gap Analysis) to be submitted September 30, 2016
Discussion Topics

- Project Overview
- Technology Background
- Technical Approach / Project Scope
- Progress / Current Status
- Future Development / Testing
Future Development & Testing

• New membrane improvement concept development
 – Lower pressure membrane design
 – Conduct laboratory testing at supplier facilities
 – Conduct laboratory testing at GE test facilities
 – Economic assessment to be performed to determine feasibility
 – Research and development budget to be determined in January, 2017