

CCSI

Carbon Capture Simulation Initiative

Capabilities of the CCSI Toolset

David C. Miller, Ph.D.

9 August 2016

For Accelerating Technology Development

Rapidly synthesize optimized processes to identify promising concepts

Better understand internal behavior to reduce time for troubleshooting

Quantify sources and effects of uncertainty to guide testing & reach larger scales faster

Stabilize the cost during commercial deployment

National Labs

Academia

Industry

'aspentech

PRODUCTS 1

NNSYS

EASTMAN

Goals & Objectives of CCSI

- **Develop** new computational tools and models to enable industry to more rapidly develop and deploy new advanced energy technologies
 - Base development on industry needs/constraints
- **<u>Demonstrate</u>** the capabilities of the CCSI Toolset on non-proprietary case studies
 - Examples of how new capabilities improve ability to develop capture technology
- **Deploy** the CCSI Toolset to industry

Projects with industry

Current licensees

Advanced Computational Tools to Accelerate Carbon Capture Technology Development

CCSI Toolset: New Capabilities for Modeling & Simulation

Maximize the learning at each stage of technology development

Early stage R&D

- Screening concepts
- Identify conditions to focus development
- Prioritize data collection & test conditions

Pilot scale

- Ensure the right data is collected
- Support scale-up design

Demo scale

- Design the right process
- Support deployment with reduced risk

CCSI Toolset to accelerate development and scale-up

Conventional MPC MMPC DAB-Net NMPC

Basic Data Requirements for CCSI Analyses

Sorbents

- Adsorption equilibrium, $f(p_{v,i}, T, x_i)$
 - All species over relevant conditions
- Heat of Adsorption for all species, $f(T, x_i)$
 - CO₂ and H₂O minimum
- Heat Capacity, f(T, x_i)
- Adsorption/Desorption Kinetics, f(p_{v,i}, T, x_i)
 - All species over relevant conditions
- Thermal Conductivity, f(T, x_i)
- Density, f(T, x_i)
- Particle Size Distribution
- Sphericity

Solvents

- Vapor-Liquid Equilibrium Data
 - over relevant p_{y,i},T, x_i ranges
- Heat of Absorption, f(T, x_i)
- Kinetic Data, f(p_{v,i}, T, x_i)
 - Including speciation
- Mass Transfer Data
 - from wetted wall column, bench scale system
- Viscosity, f(T, x_i)
- Heat Capacity, f(T, x_i)
- Density, f(T, x_i)
- Surface Tension, f(T, x_i)
- Vapor Pressure, f(T, x_i)
- Thermal Conductivity, f(T, x_i)
- Hydraulic Data for specific packing

CCSI Approach: Multi-scale Calibration

- Challenge:
 - Large number of parameters in bench scale models and properties submodels
 - Limited data = full calibration conceptually and computationally difficult.
- New approach:
 - Multi-scale calibration
 - Propagate uncertainty from properties models during bench scale calibration

Developing Detailed, Predictive Models of Solvent-Based Capture Processes

Optimization, Uncertainty Quantification, Surrogate Models

D. C. Miller, B. Ng, J. C. Eslick, C. Tong and Y. Chen, 2014, Advanced Computational Tools for Optimization and Uncertainty Quantification of Carbon Capture Processes. In Proceedings of the 8th Foundations of Computer Aided Process Design Conference – FOCAPD 2014. M. R. Eden, J. D. Siirola and G. P. Towler Elsevier.

Highly Resolved Models for Solvent-based Capture

Predictive understanding at scale Hierarchical multi-scale modeling framework

Micro/Meso-Scale VOF model

Fernandes et al., JSF, 2009

CCSI Toolset Products

Basic Data Fitting Tools Tool

Oxycombustion System Optimization Framework

Major release November 2015

Updated June 2016

CCSI

Carbon Capture Simulation for Industry Impact

Tuesday, August 9 – Admiral Room

racsady, August 5 Admindration		
1:30	2:50	Sub-Process Models
		Baseline VLE Modeling
		Modeling Improvements via Simultaneous Regression
		Solvent-Based Model Development: Incorporating Uncertainty
		FOQUS: A Computational Tool for Design Optimization and Uncertainty Quantification
3:05	4:05	Process Models
		Approximate Models
		Rigorous/Predictive Models & Uncertainty Quantification
		Deterministic Dynamics & Control
		Innovative Processes
4:05	4:45	Unit Operation Models
		Predictive Device-Scale Performance for Sorbent- and Solvent-Based CO ₂ Capture with High
		Fidelity CFD Models
4:45	4:55	New Capabilities: Amine Aerosol Modeling
4:55	5:15	Data and Simulation Management

Wednesday, August 10 – Admiral Room

9:00	9:10	Welcome & Day 2 Overview Michael Matuszewski, National Energy Technology Laboratory
9:10	9:45	CCSI Toolset Commercialization & Long Term Support Adekola Lawal, Process Systems Enterprise
9:45	10:15	CCSI Toolset Licensing Status, Benefits & Procedures Susan Sprake, Los Alamos National Laboratory
10:45	11:00	The Future of CCSI ² : Making an Impact on Industry John Shinn
1:00	5:00	CCSI Toolset Demonstrations – Discuss Tools/Models

Rapidly synthesize optimized processes to identify promising concepts

Better understand internal behavior to reduce time for troubleshooting

Quantify sources and effects of uncertainty to guide testing & reach larger scales faster

Stabilize the cost during commercial deployment

National Labs

Industry

ANSYS

EASTMAN

'aspentech

PRODUCTS 1

Disclaimer This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any

