Automated Post-combustion Flue Gas Membrane Performance Testing Skid at the National Carbon Capture Center
Outline

• The NETL Post-combustion Membrane Testing Skid (PCMS)
• Lessons learned
• Initial testing results
• Ongoing testing
• Future outlook
Our home at the PC4 Bench Scale Facility
Our home at the PC4 Bench Scale Facility
Post-Combustion Membrane Testing Skid

• The proving ground for our most promising membranes
• Compact footprint: can be moved as one unit
• Fully automated operation: set and forget
 – Designed for multiday/multiweek experiments for medium/long term testing
Post-Combustion Membrane Testing Skid

- **Based on standard constant pressure membrane testing system**
 - Mixed gas analysis using gas chromatograph
 - Pressurizes feed up to 30 psig, filters particulate matter, and dehumidifies feed to avoid condensation
 - Accepts hollow fiber modules and flat sheet modules

Flue
- Chiller
 - MFC
 - HMT
 - PT
 - FI
 - ~2 slm feed bypass
 - MFC
 - Argon
 - Pumped to ~30 psig
 - +7 µm filters

Primary membrane module
- Water bath temp. control
 - 5-80 °C

PTC
- GC
 - 15-30 psia
Software and automation

- Embedded Windows 7 rugged computer/DAQ with custom LabVIEW-based software
- Enables “setup, start and walk away” operation philosophy
- Up to 5 pre-programmed pressure/flow steps
- Automated GC injections for mixed gas analysis from either feed or sweep
Membrane assembly

Flat sheet membrane assembly

Typical area: 0.6 to 2.7 cm²
Cross-current flow

Hollow fiber membrane assembly
(Single strand)

Typical length: 10 cm
Counter-current flow
December 2015 campaign timeline

- **Primary task: install and confirm PCMS operating properly**
 - Extensive tests at NETL minimizes installation and shakedown time at NCCC
- **Secondary task: test membranes (24-hour tests)**
 - 7 membranes successfully tested: 4 hollow fibers, 3 dense flat sheet membranes
December 2015 feed characteristics

PCMS-analyzed feed composition matches well with NCCC’s

Feed dewpoint depends on outside temperature (reduced by feed chiller to prevent condensation)
Reference membrane: PDMS

- **Commercial polydimethylsiloxane film**
- **Stable performance:**
 - ~3300 barrer CO₂
 - CO₂/N₂ around 8.5
 - O₂/N₂ around 1.9
 - All the above numbers agree with lit. data
- **Insufficient flowrate to measure water vapor permeability**
 - Around 16k-18k barrer
 - H₂O – much lower than literature ref. (40k)
 - 10 sccm not enough to avoid conc. polarization
Gen 1 mixed matrix coated hollow fibers

- Flat sheet TFE-PPZ/SIFSIX-2Cu₁ (not tested at PCMS)
- High surface porosity Torlon hollow fibers
- HF-1 (TFE-PPZ/30 wt% SIFSIX-2Cu₁ coating)

Polymer:

$$\begin{array}{c}
\text{OCH}_2\text{CF}_3 \\
\text{N} = \text{P} \\
\text{OCH}_2\text{CF}_3 \\
n
\end{array}$$

poly(bistrifluoroethoxy)phosphazene (TFE-PPZ)
Mixed matrix coated hollow fiber membranes

- PPZ/SIFSiX mixed matrix coated hollow fiber (HF-1)
 - Slight decline in all gas permeance over 22h: CO₂ from ~75 GPU to ~70 GPU
 - Insufficient time to determine decline significance

All hollow fibers are assumed: length = 10 cm, outer diameter = 540 µm
• **Three membranes planned this season**
 – Focus on medium term tests (3-4 weeks) to gain operational experience
 – Whenever available, test thin film hollow fiber composite membranes
 – One three-week test successfully concluded on a free-standing film
 – Ongoing testing on membrane #2
PDMS re-run to verify operation

- Confirmed PCMS still working after 6 months downtime
- Confirmed CO₂, O₂, N₂ results against previous run
- Higher apparent H₂O permeability (25k-28k barrer) with 50 sccm feed flowrate
- Hourly sampling frequency
Conclusions

- **We have an operational membrane testing skid at NCCC**
 - Versatile for testing different membrane formats
 - Short term testing gives data well corroborated with literature values and/or other testing equipment at NETL
 - Sufficient feed flowrate is required to quantify water vapor permeance accurately

- **Short term membrane performance at low humidity + contaminants consistent with performance under dry, ideal conditions**

- **The PCMS can be operated unattended for longer periods of time**
 - We have completed a three-week unattended test
 - The skid can tolerate several process upsets (e.g. temporary loss of feed flue gas)
 - Gas chromatograph maintenance imposes the biggest limitation on testing length
Future plan

• **Finish current testing season at NCCC**
 – Up to two additional membranes to be tested (4 week runs)
 – Upgrade feed flowrate capability to measure water vapor permeance

• **Design improvements**
 – More efficient water vapor removal to protect GC columns
 – Flow components to accommodate small multi-fiber modules

• **Continue developing membranes with focus on thin film composite hollow fiber membranes**
Acknowledgements

NETL

• Kevin Resnik
• Dave Hopkinson
• John O’Connor
• Jeffrey Hash
• Ron Hirsh
• Ray Rokicki
• Bill Walker
• Rocky Stoneking
• Rich Valdisera
• Surendar Venna
• Shan Wickramanayake
• Ganpat Dahe
• Ali Sekizkardes
• Christina Myers

NCCC

• Justin Anthony
• Bob Lambrecht
• NCCC process engineers
• Caddell construction crew

Shimadzu Corp.

• Heather Juzwa
• Mark Waksmonski
• Yuan Lin
Thank you for your attention!

This technical effort was performed in support of the National Energy Technology Laboratory’s ongoing research under the RES contract DE-FE0004000.

This project was funded by the Department of Energy, National Energy Technology Laboratory, an agency of the United States Government, through a support contract with AECOM. Neither the United States Government nor any agency thereof, nor any of their employees, nor AECOM, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.