Flame Flashback in Hydrogen-rich Gas Turbines

Venkat Raman Department of Aerospace Engineering University of Michigan

Noel Clemens Dept. of Aerospace Engineering and Engineering Mechanics The University of Texas at Austin

DOE DE-FE0012053 with Dr. Mark Freeman as Program Monitor

Background

- Overarching goal: Understand flame flashback in hydrogen-rich gas turbines
 - ➡ High pressure higher Reynolds number flow
 - Fuel stratification effects
- Experimental program
 - Conduct high pressure experiments in UT swirler configuration
 - Simultaneous PIV/PLIF measurements to characterize flame/boundary layer interaction

Computational program

Develop models for predicting flashback in stratified flame configurations

Target-based Flashback Modeling

• UT high-pressure swirl combustor

Model swirl combustor

Summary of Results

• High pressure experimental data

- 1-4 bar methane and methane/hydrogen experiments conducted
- Focus on fuel stratification

• Understanding model sensitivities

- Low-Ma vs compressible flow modeling
- Effect of stratification on flame structure
- Numerical modeling of flame structure propagation
- Open source LES tool for gas turbines

High-Pressure Combustion Facility

- Test stratification effects at elevated pressure
 - Up to 10 bar
- Swirl burner
- Concentric stratified flame burner

Acetone PLIF to assess stratification

- Acetone-CH₄ mixture injected through outer holes only
- Signals mapped to equivalence ratio

Instantaneous equivalence ratio

Effect of stratification on flashback

Comparison of flashback with fully premixed and stratified reactants

Fully premixed

Stratified

Summary of Results

• High pressure experimental data

- ➡ 5 bar methane and methane/hydrogen experiments conducted
- Focus on fuel stratification

• Understanding model sensitivities

- Low-Ma vs compressible flow modeling
- Effect of stratification on flame structure
- Numerical modeling of flame structure propagation
- Open source LES tool for gas turbines

Flow Laminarization

- LES solvers based on low Mach number approximation
 - Necessary for accelerated calculations in low speed flows
- Flame propagation affects upstream turbulence more significantly than experiments
 - Is there a finite propagation speed of pressure fluctuations?
 - Leads to laminarization of flow ahead of the flame
- Are basic flow assumptions not valid in unsteady confined flame motions?

Effect of Compressibility on Transient Flows

- Flow governing equations solved in two different ways
 - Fully compressible formulation
 - No assumptions regarding compressibility
 - Time step limited by speed of sound
 - Low Mach number formulation
 - Assume pressure waves propagate at infinite speed
 - Time step limited by local fluid velocity
 - Ideal for slow but variable density flows
- Is low Ma assumption valid for transient flashback events?
 - Pressure gradients propagate at finite speed changing local flow structure

Compressible vs Low Mach Number Solver

Numerical procedure

Compressible

- 5th order WENO scheme for convection
- 6th order central scheme for diffusion
- BQUICK for scalar
- LES with dynamic Smagorinsky model $\Delta_{LES} = 0.1 \text{ mm}$
 - ${\ensuremath{\bullet}}$ Kolmogorov length scale ${\ensuremath{\sim}}$ 0.25 mm
 - Laminar flame thickness ~ 0.175 mm

Low Ma

- 6th order central scheme for convection
- 6th order central scheme for diffusion
- BQUICK for scalar

Compressibility regime

- Ma << 1
 - Far away from compressible regime
- With the compressible solver :
 - $d\rho = \frac{\partial \rho}{\partial C} dC + \frac{\partial \rho}{\partial P} dP$
 - Two competing phenomena affect density : combustion and dynamic pressure
 - The effect of combustion on density overwhelms the effect of local compression

Differences in Flame Characteristics

- <u>Phase I :</u> Both solvers are very close during the onset phase. The depth stops increasing earlier for the compressible solver leading to a defect in flashback speed.
- <u>Phase II :</u> The depth stabilized for the low Ma number solver but keeps on increasing for the compressible solver. Flashback speed recovers. Wrinkling is underestimated.
- <u>Phase III :</u> The compressible depth is stable but the flashback speed keeps on increasing. Flame wrinkling is increasing.

Flame Front Flow Features

Flame Front Statistics

Conclusions #1

- Low Ma version predicts global characteristics
 - Differs significantly from compressible formulation
 - Introduces uncertainty in the results

• Current plan

- Test low-Ma and compressible solvers for a variety of flashback conditions; estimate differences
- Ensure that low-Ma solver is reliable for the range of conditions tested
 - Else, develop compressibility-enhanced versions
 - One approach is to introduce acoustics-based techniques

Effect of Stratification

- Strategy for flashback control
 - Introduce stratification
 - Leaner mixtures injected near walls
- How does stratification affect flashback
 - Mixture no longer with constant equivalence ratio
 - Premixed combustion models cannot be used
- For stratification in gas turbines
 - Is the flame structure altered?

DNS of Flame in a Box

- DNS of homogeneous isotropic turbulence with uniform mean flow
 - Detailed chemical kinetics
- Two cases
 - Large scale stratification
 - Inflow equivalence ratio varied from 2 to 0 over 3/4 residence time
 - Small scale stratification
 - Equivalence ratio variations introduced as small-scale structures

Large-scale Stratification

- Flame structure a sequence of flamelets
- Equivalence ratio is variation not sufficient to affect flame front

FLAMELET SOLUTIONS

Small-scale Stratification

- Scalars generated using model spectrum
- Peak energy at 1/12 domain height
- Statistically stationary case

U (m/s)

Conclusions #2

• Small-scale stratified flame significantly different

- Post-flame velocities are lower
- Less flame wrinkling
- Distributed heat release

• Current plan

- Complete DNS studies
- Establish base line models for stratified mixtures
 - Choice between PDF-based approaches or flame-surface based approaches

Numerical Modeling of Flames

- LES is the accepted tool for modeling turbulent flames
- LES has unique challenges
 - Strong interference of numerical method on solution
 - Grid convergence is all-but-impossible
- How to mitigate numerical errors?
- Current model development procedure
 - Relies exclusively on structured grids
 - Toy problems of very little relevance to industry
- Is there an effect of unsteadiness on model formulations?

Numerical Errors in LES

- LES resolves a range of turbulent length scales
 - A spectrum of wavenumbers
- Numerical methods used to discretize partial differential equations
 - Assume smooth underlying flow field
 - Not correct for turbulent flow
 - Introduces errors
 - Numerical errors scale with wavenumber
 - Highest errors at filter scale
 - Contaminates numerical solution
 - Can lead to counterintuitive behavior

Flame Surface Models

- For premixed combustion at moderate Reynolds numbers
 - ➡ Flame surface models are reasonable
 - The motion of flame surface is treated using a single field variable
 - G (level-set) variable or progress variable
- Level set approach
 - Numerically better suited for predicting flame surface
 - However, encounters flame volume loss
 - Difficult to transition to stratified combustion models
- Approach used here: Progress variable description

Progress Variable Approach and Flashback

• Transport equation for C

$$\frac{\partial \rho C}{\partial t} + \nabla \cdot (\rho UC) = \nabla \cdot (D(C)\nabla C) + \dot{\omega}(C)$$

Filtered; Leads to unclosed terms; Need modeling

Models for chemical source term

Require underlying flame structure

• LES problem

- Imposed flame structure is not maintained as simulation proceeds
- Not a big issue for steady-state problems
- Unsteady flashback accumulates these errors over time

Flame Thickness

- Model closures use two different terms
 - Imposed flame thickness (L) and source term
 - Product is proportional to consumption speed
- Counter-intuitive LES behavior
 - Flame thickness is reduced with time
 - Leads to reduced burning rate
 - Arrests flashback

Structure-Preserving Reaction Model

• Treat progress variable discretely (in space and time)

$$C(t + \Delta t) = C(t) + f(C, u)$$

Introduce time-dependent translation

$$F: C(x,t) \to \widetilde{C(x,t)} = C(x - (\frac{\rho_0 s_L t}{\rho(C)} - \frac{1}{\rho(C)} \int_0^t \rho u(t') dt'), t)$$

- We require the distribution of C(x,t) to be independent of time
- Introduces numerical flame structure

$$f(x,t) = \left(\frac{\rho_0 s_L}{\rho(x,t)} - \frac{1}{dt} \int_t^{t+dt} u(t')dt'\right) \frac{\partial \widetilde{C}}{\partial x}$$

Guarantees constant local flame speed; Enables consistent flame thickening

Open Source Gas Turbine Software Platform

- Integral part of the flashback model project
- Enable rapid dissemination of results
- Prior collaboration with Siemens
- Currently working with Oregon State, Iowa State, KAUST, UT Austin, and Princeton on enhancing capabilities
- Progress in last year
 - All models implemented in OpenFOAM
 - Minimal kinetic energy dissipation enforced

Siemens PLR 3-jet Combustor

• Lean combustion with heat loss

Next Steps

• Develop structure-preserving reaction model

- Implement and validate using UT swirler data and legacy data (Darmstadt)
- Develop stratified combustion model with heat loss
 - Conduct DNS to evaluate flame structure
 - Identify model formulations

• Fuel effects at high pressure

- Identify the role of differential diffusion, and fuel composition on boundary-layer/flame interaction
 - Experiments and DNS data