

New Mechanistic Models of Creep-Fatigue Interactions for Gas Turbine Components (DE-FE0011796)

Thomas Siegmund

School of Mechanical Engineering, Purdue University Email: <u>siegmund@purdue.edu</u>

Vikas Tomar

School of Aerospace and Aeronautical Engineering, Purdue University Jamie Kruzic Oregon State University

Purdue University

- Thomas Siegmund with Dr. Trung Nugyen (post doc)
- Vikas Tomar with Devendra Verma (PhD student)

Oregon State University

Jay Kruzic with Halsey Ostergaard (PhD Student)

DOE-NETL Program Management

PM Dr. Rin Burks

DOE-NETL Collaboration

• Dr. Jeff Hawk NETL Albany

	Project Duration - Start: 2/15/2015 End: 12/1/2017															
Project Milestone	P	roject Y	(ear (PY	1	P	roject Y	ear (PY)	2	-	Project)	fear (PY	13	Planned	Planned End	Actual Start	Actual End
Description	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12	Start Date	Date	Date	Date
Project Management																
Plan	x												2/15/15	3/1/15	2/15/15	3/1/15
Literature Assessment	х	х											2/15/15	5/1/15	2/15/15	5/1/15
Material Acquisition	х	х											2/15/15	5/1/15	2/15/15	5/1/15
Definition of Strain																
Gradient Visco-										1	1					
Plasticity	x	x	x										2/15/15	7/1/15	2/15/15	7/1/15
Definition of Cohesive																
Zone Model			x	x									7/1/15	12/1/15	7/1/15	
HT Nanoindentation		х	x	x									5/1/15	12/1/15	8/1/15	
Uniaxial Cyclic																
Deformation Data and										1	1					
Parameters		x	x	x									5/1/15	12/1/15	8/1/15	
Model																
Implementation of										1	1					
UMAT and UEL				x	х	x							12/1/15	5/1/16	8/1/15	
Model Verification				x	х	х							12/1/15	5/1/16	8/1/15	

BACKGROUND

Cracks: In conventional and AM parts

[1] 2006 Los Angeles Incident, PROBABLE CAUSE: "The HPT stage 1 disk failed from an intergranular fatigue crack" http://aviation-safety.net/database/record.php?id=20060602-0

[2] Direct Metal Laser Sintering: Karl Wygant et al.; Pump and Turbine 2014

Views on Fatigue Failure

- S-N: stress only, no cracks
- Fracture Mechanics: global description, cracks Rule based (Paris law and beyond)
- Micromechanics: local description
 Aims to avoid rules and become predictive
 in complex loading scenarios

Plasticity

EBSD misorientation

to reference at crack tip

Misorientation=GND Strain gradients

Brewer et al. Microsc. Microanal. 12, 85–91, 2006

BACKGROUND: RATE INDEP.

$$r_{m} = \frac{1}{3\pi} \frac{K}{(\sigma_{0})^{2}} \rightarrow r_{c} = \frac{1}{3\pi} \frac{K}{(4\sigma_{0})^{2}} \quad \text{....cyclic plastic zone size}$$
$$\eta = \frac{\Delta \varepsilon_{pl}}{r_{c}} \quad \text{....} \quad \text{strain gradient, therefore a length } \Lambda[m]$$

$$\varepsilon_{pl}, \eta \rightarrow \sigma_0 = f(\varepsilon_{pl}, \eta, microstr.)$$

$$\Delta a \approx \Delta CMOD = \frac{J}{2\sigma_0} \rightarrow \left(\frac{J}{2\sigma_0}/\Lambda\right)$$
.....non-dim.

Hypothesis

Strain Gradient effects of viscoplastic deformation play a relevant role in the failure response of IN 718 at use temperature (650°C).

- Conventional viscoplasticity is incomplete in its description of rate dependent deformation as effects of gradients of strain are ignored.
- Gradient theories predict higher crack tip stresses, and thus stronger activation of stress dependent processes
- Gradient theories alter the tip deformation fields, an thus not only a cyclic plastic zone but also a cyclic gradient zone exist in fatigue

Research Question 1

How do we formulate a constitutive framework that accounts for gradient viscoplasticity and other observed specific features of plasticity in IN 718.

Research Question 2

What are the experimental methods to determine the lengthscale parameters inherent to a gradient theory through experimentation?

Research Question 3

How is a Local-Approach to material failure best be used to predict crack growth in IN 718 under creep-fatigueenvironmental loading conditions?

OVERVIEW: ORIGINAL PLAN

Research on Constitutive Parameters

Research on Crack Propagation Models

Initial Validation & Model Refinement

Final Validation & Model Refinement

Small Scales and Long Times can only be addressed with advanced continuum

OVERVIEW: LENGTHAND TIME

E

PROGRESS: LEAD KRUZIC

Material Acquisition and Collaboration

- IN 718
- Provided by Jeff Hawk, NETL Albany
- Processing (at NETL)

Step forging and squaring (from round slab D=8.5" to plate t=1.25"; Hot rolling into a plate t=0.616"; solution annealed. Received a plate roughly 27" x 5 5/8 " x 0.616".

Processing (at OSU)

Solution annealed at 982°C, 1hr, air cooled Hardened by holding at 718°C for 8hrs, then furnace cooled to 621°C and held for 10 hrs, then air cooled.

Optical Microstructure Characterization

Uniform and equiaxed microstructure

EBSD on Transverse Section

Highly twinned Most twins as Σ 3 (from recrystallization) <u>PURDUE</u>

Grains & Twins: Grain Size and Orientation

Analysis with and without twins

Texture

Oregon State

Only weak initial texture, remnants of a cube (100)[001] and even weaker fiber <111> texture exist

Grain and Twin Boundaries

(a) Misorientation axis distribution

(b) Misorientation angle distribution

Strongly influenced by S3 twins

Creep Experiment: In progress

HT Experiments on CT specimens with potential drop measurements

PROGRESS: LEAD TOMAR

High Temperature Nanoindentation Probe plasticity at small length scales

Oregon State

HT Nanoindentation: Specimen preparation

HT Nanoindentation: Experimental plan Through change in indent depth the ratio of **viscoplast. strain & viscoplast. strain gradient** is altered \rightarrow obtain the relevant length scale

Load (mN)	25 °C (no. of points)	350 °C (no. of points)	650 °C (no. of points)	Post oxidation (no. of points)	Dwell time (s)
50	10	10	10	10	500
100	10	10	10	10	500
200	10	10	10	10	500
300	10	10	10	10	500
400	10	10	10	10	500

HT Nanoindentation: 1st data on IN 718

PROGRESS: LEAD SIEGMUND

Constitutive Models: Gradient Effects

Flow stress

$$\sigma_{\rm flow} = \sigma_0 + M \alpha \mu b \sqrt{\rho}$$

- σ_0 : stress related to lattice friction and solute contents
- *M*: average Taylor factor ($M \approx 3$)
- α : weighting factor of dislocation interactions ($\alpha \approx 1/3$)
- μ : shear modulus
- *b*: Burgers vector

Constitutive Models

Dislocation density: $\rho = \rho_S + \rho_G$

- Statistically stored dislocation:

$$\rho_{S} = \frac{\sqrt{3}\overline{\varepsilon}^{vp}}{b\Lambda}$$

Λ : mean free path

- Geometrically necessary dislocation:

$$\rho_{G} = \overline{r} \frac{\overline{\eta}}{b}$$

 $\overline{\eta}$: effective plastic strain gradient \overline{r} : Nye-factor ($\overline{r} = 1.90$)

Constitutive Models: Flow Stress

$$\sigma_{\text{flow}} = \sigma_0 + M \alpha \mu b \sqrt{\rho_s + \rho_g} = \sigma_0 \left(1 + \frac{\sqrt{3} \alpha \mu b}{\sigma_0} \sqrt{\frac{\sqrt{3} \overline{\varepsilon}^{\nu p}}{b \Lambda}} + \frac{\overline{\eta}}{b} \right)$$

$$\Delta \overline{\mathbf{\varepsilon}}^{vp} = g(\mathbf{\sigma}, \mathbf{q}) \qquad \mathbf{q}: \text{ state variable vector}$$

$$\Delta \overline{\varepsilon}^{vp} = \Delta t \dot{\overline{\varepsilon}}^{vp} = \Delta t \cdot g(\sigma, \mathbf{q}) = \Delta t \dot{\overline{\varepsilon}}_{0} \left(\frac{\overline{\sigma}}{\sigma_{\text{flow}}}\right)^{m}$$
$$\left(\frac{J}{2\sigma_{0}}/\Lambda\right), (b/\Lambda), \left(\frac{\dot{J}}{2\sigma_{y}}/\dot{\varepsilon}_{0}\Lambda\right)$$
$$\underbrace{\text{PURD}}_{UNIVERS}$$

Computational Implementation

$$\begin{split} \dot{\varepsilon}_{ij} &= \frac{\dot{\sigma}_{ij}}{9K} \delta_{ij} + \frac{\dot{s}_{ij}}{2\mu} + \frac{3\dot{\overline{\varepsilon}}^{vp}}{2\overline{\sigma}} \dot{s}_{ij} = \frac{\dot{\sigma}_{ij}}{9K} \delta_{ij} + \frac{\dot{s}_{ij}}{2\mu} + \frac{3\dot{\overline{\varepsilon}}_{0}}{2\overline{\sigma}} \Biggl[\frac{\overline{\sigma}}{\sigma_{0} \Biggl(1 + \frac{\sqrt{3}\alpha\mu b}{\sigma_{0}} \sqrt{\frac{\sqrt{3}\overline{\varepsilon}^{vp}}{b\Lambda} + \frac{\overline{\eta}}{b}} \Biggr) \Biggr)^{m} \dot{s}_{ij} \\ \dot{\sigma}_{ij} &= K\dot{\varepsilon}_{ij} \delta_{ij} + 2\mu \Biggl\{ \dot{\varepsilon}_{ij}' - \frac{3\dot{\overline{\varepsilon}}_{0}}{2\overline{\sigma}} \Biggl[\frac{\overline{\sigma}}{\sigma_{0} \Biggl(1 + \frac{\sqrt{3}\alpha\mu b}{\sigma_{0}} \sqrt{\frac{\sqrt{3}\overline{\varepsilon}^{vp}}{b\Lambda} + \frac{\overline{\eta}}{b}} \Biggr]^{m} \dot{s}_{ij} \Biggr\}$$

.

UNIVERSITY

Computational Implementation

Euler implicit scheme + Newton-Raphson iteration

- Nonlinear equations

$$\begin{split} f_1 \Big(\Delta \overline{\varepsilon}^{vp}, \overline{\sigma} \Big) &= \Delta \overline{\varepsilon}^{vp} - \Delta t \dot{\overline{\varepsilon}}_0 \left(\frac{\overline{\sigma}}{\sigma_{\text{flow}}} \right)^m = 0 \\ f_2 \Big(\Delta \overline{\varepsilon}^{vp}, \overline{\sigma} \Big) &= 3\mu \Big(\overline{\varepsilon}^* - \Delta \overline{\varepsilon}^{vp} \Big) - \overline{\sigma} = 0 \end{split}$$

- Trial state

$$\boldsymbol{\varepsilon}_{n+1}^{trial} = \boldsymbol{\varepsilon}_n^{el} + \Delta \boldsymbol{\varepsilon}; \quad \overline{\boldsymbol{\varepsilon}}^* = \sqrt{\frac{2}{3}} \boldsymbol{\varepsilon}_{n+1}^{trial} : \boldsymbol{\varepsilon}_{n+1}^{trial}$$

Computational Implementation

- Iteration

$$\begin{cases} \Delta \overline{\varepsilon}^{vp} \\ \overline{\sigma} \end{cases}_{n+1} = \begin{cases} \Delta \overline{\varepsilon}^{vp} \\ \overline{\sigma} \end{cases}_{n}^{-1} - \mathbf{J}_{n}^{-1} \begin{cases} f_{1} \left(\Delta \overline{\varepsilon}^{vp}, \overline{\sigma} \right) \\ f_{2} \left(\Delta \overline{\varepsilon}^{vp}, \overline{\sigma} \right) \end{cases}_{n} \\ f_{2} \left(\Delta \overline{\varepsilon}^{vp}, \overline{\sigma} \right) \end{cases}_{n}$$
$$\mathbf{J}_{n} = \begin{bmatrix} \frac{\partial f_{1}}{\partial \Delta \overline{\varepsilon}^{vp}} & \frac{\partial f_{1}}{\partial \overline{\sigma}} \\ \frac{\partial f_{2}}{\partial \Delta \overline{\varepsilon}^{vp}} & \frac{\partial f_{2}}{\partial \overline{\sigma}} \\ \frac{\partial f_{2}}{\partial \overline{\sigma} \overline{\varepsilon}} \end{bmatrix}_{n}$$

 $\overline{\mathcal{E}}_{n+1}^{vp} = \overline{\mathcal{E}}_n^{vp} + \Delta \overline{\mathcal{E}}^{vp}$

 Stress update follows a standard procedure upon convergence of the above iteration.

OUTCOMES

Results: Creep Rupture

Relates to issue of voids in DMLS materials

E (GPa)	V	σ_{y_0} (MPa)	$\frac{\overline{\overline{\mathcal{E}}}_{0}}{(s^{-1})}$	т	b (nm)
200	0.3	250	0.005	5	0.25

Void Growth conventional plasticity No size effect only rate effect

Void Growth with SGP: Void Size Effect combined with a rate effect

- Smaller voids lead to higher stresses
- Smaller voids are more sensitive to rate

Strength Differential Effect (Data by Lissenden et al)

$$SD = 2 \frac{|\sigma_{c}| - |\sigma_{T}|}{|\sigma_{c}| + |\sigma_{T}|} = 0.12$$
$$SR = \frac{|\sigma_{T}|}{|\sigma_{c}|} = 0.88$$

Strength Differential Effect: Yield Function

$$\Phi(s_1, s_2, s_3) = (|s_1| - k \cdot s_1)^m + (|s_2| - k \cdot s_2)^m + (|s_3| - k \cdot s_3)^m$$

m = 2, k = 0...von Mises

$$k = \frac{1 - \left\{\frac{2^{m} - 2 \cdot \left(\sigma_{T} / \sigma_{C}\right)^{m}}{\left(2 \cdot \sigma_{T} / \sigma_{C}\right)^{m} - 2}\right\}^{(1/m)}}{1 + \left\{\frac{2^{m} - 2 \cdot \left(\sigma_{T} / \sigma_{C}\right)^{m}}{\left(2 \cdot \sigma_{T} / \sigma_{C}\right)^{m} - 2}\right\}^{(1/m)}}$$

Strength Differential Effect: UMAT

E (GPa)	E (<i>GPa</i>) v		$\sigma_{_C}$ (MPa)	K (MPa)	\mathcal{E}_0	n			
165	0.297	779	876	1003	0.0013	0.038			
$\sigma = K$	$\left(\boldsymbol{\varepsilon}_{0} + \boldsymbol{\varepsilon}_{0} \right)$	$\overline{\varepsilon}$) ⁿ	1000 800 600 400 200	IN718 @ 650 °C Young's modulus: 165 GPa Poisson's ratio: 0.297					
RII				0.005 Plas		- UMAT ssion - UMAT 0.015 0.02			

NIV

Strength Differential & Indentation

Crack Growth: Cohesive Zone Models

$$T_{n} = \sigma_{\max,0} e^{\left(\frac{\Delta_{n}}{\delta_{0}}\right)} \exp\left(-\frac{\Delta_{n}}{\delta_{0}}\right)$$

$$\sigma_{\max} = \sigma_{\max,0} \left(1 - D_{C}\right)$$

$$\Delta D_{C} = \max\left\{0, \frac{\left|\dot{\Delta}_{n}\right|}{\delta_{\Sigma}} \left[\frac{T_{n}}{\sigma_{\max}} - \frac{\sigma_{f}}{\sigma_{\max,0}}\right] H\left(\Delta_{n,acc} - \delta_{0}\right)\right\}$$

$$\Delta_{n,acc} = \int_{t} \left|\dot{\Delta}_{n}\right| dt$$

$$D_{C} = D_{C} + \Delta D_{C} \qquad \left(\frac{J}{2\sigma_{0}} / \Lambda\right), \left(\frac{b / \Lambda}{2\sigma_{y}} / \dot{\varepsilon}_{0}\Lambda\right), \left(\frac{\delta / \Lambda}{2\sigma_{y}}\right)$$

Modified Boundary Layer Model

$$u_x(t) = K_I(t) \sqrt{\frac{r}{2\pi}} \frac{1+\nu}{E} (3-4\nu-\cos\theta)\cos\frac{\theta}{2} \qquad K(t) = \sqrt{\frac{EG(t)}{(1-\nu^2)}}$$
$$u_y(t) = K_I(t) \sqrt{\frac{r}{2\pi}} \frac{1+\nu}{E} (3-4\nu-\cos\theta)\sin\frac{\theta}{2} \qquad K(t) = \sqrt{\frac{EG(t)}{(1-\nu^2)}}$$

Strain Gradients and FCG

 FCG Rates with SGP are larger than without

Strain Gradients and FCG

Opening stresses with SGP are larger than without

Strength Differential and FCG

FCG Rates appear as little affected by SD alone

Strength Differential and FCG

Crack closure appear as affected by SD alone

Computational Fracture Mechanics

Full semester course Online

https://engineering.purdue.edu/ProEd/

CONCLUSION

- Procured and characterized materials
- Established interaction with Jeff Hawk, NETL Albany
- Property measurements are forthcoming
- Computational mechanics: Advanced model implementation on several fronts
 - Strain gradients raise the open stress level and appear to accelerate crack growth
 - Strength differential alters the crack closure conditions but appears to not accelerate crack growth
- Mechanics indicates the SGP and SD effects alter the crack tip stress state which would alter crack growth in creep and environmental degradation

