2015 University Turbine Systems Research Workshop Co-organized by DoE Office of Fossil Energy, DOE NETL, and Georgia Tech 2-5 November 2015

Challenges in Measuring the HTC for Turbine Cooling

Tom I-P. Shih and C.-S. Lee

School of Aeronautics and Astronautics, Purdue University

Mark Bryden

Ames National Laboratory, U.S. Dept. of Energy

Robin Ames and Rich Dennis

National Energy Technology Laboratory, U.S. Dept. of Energy

Our research group's focus is on turbine cooling. Current efforts include:

- LES of ingress/egress through rim seals that accounts for rotor-stator interactions.
- LES of internal & film cooling aimed at generating statistics to guide the development of RANS models.
- Inflow BC for LES and BC at the interface between LES and RANS for hybrid methods.
- Develop reduced-order methods from CFD for system-level tools.
- Examine fundamental issues in computing & measuring heat-transfer relevant to turbine cooling.

Outline of Talk

Revisit

- HTC measured by transient methods
- HTC measured by steady-state methods
 What else?

Nu = F(Re, Pr, geometry)? Summary & Current Work

Measurements of HTC by Transient Methods

1-D Model

liquid crystal:

h, T_{bulk}

0-D Model

h

Measurements are needed to validate CFD tools.

A widely used method is the **thermochromic liquid crystal technique**.

HTC: 1-eq vs 2-eq vs URANS & RANS at the time T_{surface} = 37.6 °C

Measurements of HTC by Transient Methods

- HTC measured by transient methods differ from the HTC under steady-state conditions with isothermal walls (up to 17% for the pinfin problem and up to 26% for the rib problem).
- HTC measured by the transient methods vary appreciably in time (up to 31% over 10 seconds).
 Thus, it is unclear which HTC measured is the correct or the meaningful one.

Sathyanarayanan, Ramachandran , Shih, et al. (AIAA 2015-1195)

Issues:

- Lab vs engine-relevant conditions? Will data from lab conditions be useful?
- Since HTC = f(wall BC: T or q"), what are the effects of imposing constant q", which is what is typically used?
- What are the effect of the plate thickness and its material properties on the HTC?

Problem Description

Heating BCs on Hot-gas Side

Case I	HTC_hot = infinity	
case I-1	const. temperature	T _{w,hot} =1,273 K
case I-2		T _{w,hot} =1,755 K
Case II	HTC_hot = average of HTC_cold	
case II-1		h _h =100 W/m²-K, T _{hot} =1,755 K
case II-2	const. convective environment	h _h =1,000 W/m²-K, T _{hot} =1,273 K
case II-3		h _h =1,000 W/m²-K, T _{hot} =1,755 K
Case III	specified q" without HTC_hot	
case III-1	adiabatic	q" _{w,hot} =0 W/m²
case III-2	const. heat flux	q" _{w,hot} =253,012 W/m²
case III-3		q" _{w,hot} =462,483 W/m²
Case IV	specified heating BCs with Bi=0.01, 0.1, 1 (varied k)	
IV-1	const. heat flux (q"=462,483W/m²)	Bi=0.01
IV-2		Bi=0.1
IV-3		Bi=1
IV-4	const. temperature	Bi=0.01
IV-5	(T _{hot} =1755K)	Bi=0.1
IV-6		Bi=1
IV-7	const. convective environment (h=600 W/m²K, T _h =1755K)	Bi=0.01
IV-8		Bi=0.1
IV-9		Bi=1

Temperature Distribution w/ Bi=0.01, 0.1, and 1

isothermal

DoE – NETL & Ames Laboratory

HTC on Cold Wall w/ Bi=0.01, 0.1, and 1

Nu on Cold Wall w/ Bi=0.01, 0.1, and 1

isothermal

Relative Error Distribution of HTCs on Cold Wall w/ Bi=0.01, 0.1, and 1

isothermal

DoE – NETL & Ames Laboratory

Zonally Averaged HTC w/ Bi=0.01, 0.1, and 1

Relative Error of Zonally Averaged HTCs w/ Bi=0.01, 0.1, and 1

Total Averaged HTC & Nu of the Entire Endwall Section

Temperature Distribution w/ t//D=0, 0.5, and 1 (isothermal)

Temperature

Energy-balance T_bulk v.s. linear T_bulk

For this problem, approximating T_bulk by linear interpolation is OK because the variation in T is small.

Outline of Talk

Revisit

- HTC measured by transient methods
- HTC measured by steady-state methods
 What else?
- Bulk Temperature?
- Nu = F(Re, Pr, geometry)?

Summary & Current Work

Example 1: Bulk Temperature and Heat-Transfer Coef.

T_b is hard to measure. Why?

- an integral!
- Which cross section around the bend?
- How to handle flow separation, ribs, pin fins, ...?

Bulk temperature is almost always approximated in EXPERIMENTS but rarely documented.

- What are the consequences of the approximations?
- How should HTC be measured and used in V&V and in design?

Chi & Shih (AIAA 2012-0807)

Example 2: Heat-Transfer Coef. & Reynolds No.

Problem Description

Cases	cooling condition	heating load
1		q" = 10 KW/m²
2	Re _D = 5,000 T _c = 400 °C P _b = 25 atm	q" = 100 KW/m²
3		q" = 200 KW/m²
4		q" = 400 KW/m²
5		q" = 10 KW/m²
6	Re _D = 10,000	q" = 100 KW/m²
7	$P_b = 25 \text{ atm}$	q" = 200 KW/m²
8		q" = 400 KW/m²

$$Re_D = Re_{D,x} at x = D, \quad Re_{D,x} = \frac{\rho_x U_x D}{\mu(T_{b,x})}$$

Dimensionless Bulk Temperature

Local Reynolds Number = $Re(T_b)$

$$S_x/D = 2.5, S_y/D = 2.5, H/D = 1$$

$$Re_{D,x} = \frac{\rho_x U_x D}{\mu(T_b)}$$

UNIVERSITY

Local Prandtl Number = $Pr(T_b)$

Lateral Averaged Nusselt Number

UNIVERSITY

Correlations: \overline{Nu} v.s. \overline{Re}_D

Summary

Measuring HTC by transient methods could have some issues.

Measuring HTC by steady-state methods is relatively independent of the BC imposed on the wall surface.

The Re in an internal cooling passage may vary appreciably along the passage because of the rise in coolant temperature from 400 °C to 700 or 800 °C.

HTC is currently obtained under conditions, where T_w/T_b is near unity. Thus, scaling of HTC is needed. The question is how?

