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Motivation

« Combustion under typical gas turbine operating conditions of high pressures (up to
30 atm) and low/intermediate temperatures (T < 1000 K) is not sufficiently well
understood.
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Motivation

Temperature [ K]
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Motivation

and Ignition regimes

P=3.3atm, T=1043K ¢ =0.1
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Motivation

and Ignition regimes

Mansfield and Wooldridge, C&F 2014

P=3.3atm, T=1043K ¢ =0.1 P=9.2atm, T=1019 K, ¢ = 0.5
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HOW TO PREDICT STRONG AND WEAK IGNITION REGIMES a priori ??



Motivation

Ihme, C&F 2012 Wu & Ihme, C&F 2014
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ODbjectives

1) To identify and characterize syngas auto-ignition
regimes in the presence of thermal inhomogeneities

2) To predict the transition between “strong”™ and “weak”
ignition phenomena
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Auto-ignition regime prediction

Pal et al., CTM (2015)

» High fidelity one-dimensional numerical simulations were
performed using S3D DNS code.

e Detailed H,/CO mechanism with 12 species and 33
chemical reactions was employed [Li et al.,, 2007]. i
Detailed thermodynamic and mixture-averaged transport 1006 -
properties were incorporated. vooaf

« The following range of thermo-chemical states were i
considered in study:
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« Periodic boundary conditions were imposed to enforce a © 010203 04 05 be 07 68 03 1 A1z
fixed volume, thereby incorporating compression heating Initial T profile

and pressure-rise of reactants due to ignition. Initial flow
conditions were quiescent.

» A fine grid resolution of 4.7 ym was used to resolve the
thin propagating reaction fronts.
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Pal et al., CTM (2015)
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* An ignition kernel first develops at the location of highest temperature. Subsequently,
combustion waves emanate from this location. As fronts propagate, the remaining charge is
heated by compression, thereby accelerating the ignition of the end-gas mixture.

What is the nature of the propagating front?
Ay Deflagration versus spontaneous ignition
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Auto-ignition regime prediction

Classification of Reaction Front Regime

 Front propagation speed F of
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e Spontaneous ignition front (strong ignition)
occurs at high mean temperature and
deflagrative front (weak ignition) occurs at low
mean temperature.

 Final thermal runaway occurs earlier at lower ,
mean temperature. 05
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Auto-ignition regime prediction

Pal et al., CTM (2015)

S dr, dT Py |
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P, e e SSE=re=s
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Sa > 1 Deflagration — Weak Ignition s

Sa <1 Spontaneous Front — Strong Ignition

e Sa serves as an a priori criterion for weak versus
strong ignition, and describes the role of chemical '
kinetics, thermophysical properties and device- 2
dependent thermal characteristics on auto-ignition %
behavior.

T Sa =1 correlates well with Da;, =1.4
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Auto-ignition regime prediction

Pal et al., CTM (2015)

 Passive scalar dissipation modifies the R i
statistics of the pre-ignition temperature BN N8 SHEUEES W
1 f o Da_.. 1

field, by dissipating the fluctuations before
any significant reaction occurs.
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Next steps...

1) Extend the auto-ignition regime criteria to turbulent flow
conditions

2) Validate the turbulent ignition regime criteria
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Im, Pal, Wooldridge, Mansfield, CST (2015)

L. : chamber length (not considered)
¢ :integral eddy scale

A : Taylor microscale

é'f . Deflagration flame thickness

SL

. Laminar flame speed

Homogeneous turbulence:
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Turbulent ignition regime criteria

Im, Pal, Wooldridge, Mansfield, CST (2015)

« Scales of temperature and velocity fluctuations are
comparable.

 Pr = 1: Dissipation of temperature fluctuations is mainly
due to turbulent flows, and thus the time and length
scales for turbulent and scalar energy are the same
(Batchelor scale = Kolmogorov scale).
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Im, Pal, Wooldridge, Mansfield, CST (2015)

Turbulent Sankaran (Zel'dovich) Number

Sa = ~ﬁS( lgjWT|
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Turbulent ignition regime criteria

Im, Pal, Wooldridge, Mansfield, CST (2015)

Sa=KDa,"”

where - :ﬁ{ \/%J (Cj;}g]

.
Da, =—% (Integral Da)

Tig

2 - -
Modified ignition criterion |Da, < K~ Weak gnition

for turbulent combustion: Dae > K2 Strong ignition

(reaction-dominant)
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T
Da, = A Mixing Da — based on mixing (Taylor) scale eddies

where the mixing time and scale is determined by
T/2 TIZ
T, = 2,A§:
20|VT] |

T : RMS temperature
VT|2 fluctuation

Based on assumption that temperature mixing is similar to
turbulence mixing (i.e. Kolmogorov scale = Batchelor scale),

T, =0 Ap=4

Ly, T, T,7T,

It follows that Da/’l‘, = — — — Daﬂ Re_lB Reﬂ = —_—
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20



Turbulent ignition regime criteria

Im, Pal, Wooldridge, Mansfield, CST (2015)

Thermal fluctuations will dissipate before the front forms if

., |Da,; >1 Weakignition possible
Da, =Da, Re, | ~ |
Da, <1 Mixed/Strong (mixing-dominant)

In addition, Daﬂ <] Strong (mixing-dominant)
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Turbulent ignition regime diagram

log(Daﬂ)

Reaction intensity

Im, Pal, Wooldridge, Mansfield, CST (2015)
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Regime diagram validation

P, =20 atm, ¢ = 0.5, H,: CO = 0.7:1 (molar)

, . T T 4 ¢ u' T, THRR _max
Case | To (K) ms) | ®) K (mm) | (m's) | (ms) P2, Re. | D T
A 900 | 2577 | 15 405 | 43 | 0.05 | 86.0 | 3.34 | 3524 | 1.02 50
B 1100 | 2.07 15 251 | 43 | 0.05 | 86.0 | 41.6 | 2040 | 13.5 82
C 900 | 25.77 | 15 405 | 43 1.50 | 2.87 | 0.11 [1057.4]| 0.01 03
D 1100 | 2.07 15 251 | 6.0 0.2 30 14.5 | 164 | 2.65 87
E 900 | 2577 | 15 405 | 6.0 0.2 30 1.16 | 197 0.2 55
F 970 | 41.26 | 15 441 | 6.0 | 0.05 | 120 | 2.91 50 0.8 56
G 1020 | 12.7 15 328 | 4.0 0.3 | 1333 | 1.05 | 185 0.2 57
« Periodic boundary conditions on all sides Case A (Initial T profile)
» Passot-Pouquet turbulent kinetic energy spectrum g ®
* Uncorrelated temperature and velocity fields E"”
e Hot spot superimposed on the random T field at the E ‘ —
center of the domain §) )
» Syngas/air detailed chemical kinetic mechanism with o
12 species and 33 reactions (Li et al. 2007) ' Q | ;
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Regime diagram validation
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In the present study, auto-ignition regimes in the presence of thermal inhomogeneities are
investigated at high-pressure, low-temperature conditions.

Non-dimensional criteria based on the Sankaran number and mixing Damkohler number are
identified to identify the ‘strong’ and ‘weak’ ignition regimes.

The ignition regime criteria are further extended to turbulent flow conditions based on scaling
analysis, leading to a turbulent ignition regime diagram.

2D DNS of syngas auto-ignition in the presence of thermal and turbulent fluctuations are
performed for conditions representative of different regions of the regime diagram.

Analysis of pressure/heat release and evolution of the temperature fields indicates that the
observed auto-ignition behaviors are consistent with predictions of the proposed ignition
regime diagram.

Future work (work in progress):
- Detailed post-processing/analysis of the simulation data using CSP
- Validation of the auto-ignition regime criteria for higher hydrocarbon fuels at both NTC
and non-NTC conditions
- Extension of the auto-ignition regime criteria to incorporate mixture stratification
- Application of the regime diagram to practical combustion devices such as engines
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