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In 2013, 50% of new power generation capability came from 
natural gas, which was used in gas turbine power plants
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Source: eia.gov



These additions were split between “peaking plants” and 
combined cycle plants, both of which use gas turbines
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Source: eia.gov



Objective of the program is to understand, quantify, and 
predict combustion instability during transient operation
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— Two major deliverables for the program:

1. Fundamental understanding of flow and flame 
behavior during combustion transients and 
mechanisms for transition to instability

2. Development of a stability prediction or 
quantification framework 



Objective of the program will be achieved through 
experimental study and close ties with industry
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— Experimental program that includes two separate, 
complementary facilities

— Development of quantification and prediction 
frameworks will aid in applying the results from this work 
to other facilities, including industrial hardware

— Cost-share and partnership from GE Global Research will 
provide industry feedback and internship opportunities for 
students on project
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Very few studies have discussed the onset or control of 
instabilities during transient operation, but it’s a common issue

9
Transient operation of a Siemens SGT-200 (Bulat et al. 2007)



Engine load is typically varied by either varying fuel staging or 
the equivalence ratio of certain fuel nozzles
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Source:  Davis and Black, “Dry Low NOx Combution Systems for GE Heavy-Duty Gas Turbines”



Most of the focus on transient operation has been on 
hysteretic or triggering behavior in combustion systems
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Most of the focus on transient operation has been on 
hysteretic or triggering behavior in combustion systems

12
Kim and Hochgreb, 2012



Most of the focus on transient operation has been on 
hysteretic or triggering behavior in combustion systems

13
AIAA Paper No. 2004-0825, B-J Lee, J-G Lee and D. Santavicca



ϕ = 0.60 ϕ = 0.50 ϕ = 0.48

Photographs of multi-nozzle flame at U = 25 m/s, Tin = 200°C

Instabilities may arise as a result of changes in flame shape and 
flame anchoring that occur with variation in equivalence ratio



U = 22.5 m/s, Tin = 200°C, fully premixed, unforced 
ϕ = 0.65                 ϕ = 0.60                ϕ = 0.55                ϕ = 0.50                 ϕ = 0.45



To further investigate the structure of the multi-nozzle flame, 
3-D image sets were obtained at φ = 0.60 and φ = 0.48 

φ = 0.60 

φ = 0.48 

φ = 0.60 

φ = 0.48 



5 mm 10 mm 25 mm 40 mm

55 mm 70 mm 90 mm 110 mm

Slides through the flame shows center flame lift-off and 
significant flame-wall interaction at φ = 0.48 



5 mm 10 mm 25 mm 40 mm

55 mm 70 mm 90 mm

Flame-flame interaction dominates at φ = 0.6 and center 
flame, now attached, shows significant non-axisymmetry



Slice across  center of combustor

Slice across center of combustor

Slice across interaction regions

Slice across interaction regions

φ = 0.6 in all nozzles

φ = 0.5 in outer nozzles, φ = 0.8 in middle nozzle

Data from our multi-nozzle combustor shows that fuel splitting 
changes flame structure and oscillation during instability
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Experimental facilities include both a single-nozzle and multi-
nozzle combustor, fuel splitting on multi-nozzle only

21



Three types of transients will be considered in the program 
that mimic the types of transients used in operational turbines
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Fuel Splitting Equivalence Ratio Fuel Composition
φ = 0.6 in all nozzles

φ = 0.5 in outer nozzles, 
φ = 0.8 in middle nozzle

ϕ = 0.60

ϕ = 0.48

Images obtained from work done 
by Alex De Rosa (2011)

0% H2

50% H2



The transients will be quantified using three different metrics:  
amplitude, timescale, and direction

23

Amplitude

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

Time

E
qu

iv
al

en
ce

 R
at

io

 

 

Amplitude 1
Amplitude 2



The transients will be quantified using three different metrics:  
amplitude, timescale, and direction
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Direction
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The transients will be quantified using three different metrics:  
amplitude, timescale, and direction
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Timescale
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Competition of timescales defines the path of the transient 
and could impact the final state of the transient event
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Increasing Timescale
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Competition of timescales defines the path of the transient 
and could impact the final state of the transient event
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Competition of timescales defines the path of the transient 
and could impact the final state of the transient event
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Competition of timescales defines the path of the transient 
and could impact the final state of the transient event
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Varying the transient timescales allows for different processes 
to equilibrate during the transient, changing the path
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Project structure includes three stages of experimentation:  
mapping, transients, and quantification
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Mapping Transients Quantification
ϕ = 0.65

ϕ = 0.55

ϕ = 0.45

Kim and Hochgreb, 2012
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Mapping will include characterization of stability and 
important combustor timescales
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Mapping
ϕ = 0.65

ϕ = 0.55

ϕ = 0.45



Transient experiments will be designed based on the mapping, 
varying the transient amplitude, direction, and timescale
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Mapping Transients
ϕ = 0.65

ϕ = 0.55

ϕ = 0.45

Kim and Hochgreb, 2012



Both the transient input and the combustor response will be 
quantified and a describing framework will be developed
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Mapping Transients Quantification
ϕ = 0.65

ϕ = 0.55

ϕ = 0.45

Kim and Hochgreb, 2012

ϕ(t,A)

Describing 
function
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Stability limits of certain operating points are already known, 
current work focuses on mapping instability with fuel splits
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Inlet temperature = 200°C

15 17.5 20 22.5 25 27.5 30
0.40
0.45
0.50
0.55
0.60
0.65
0.70

U (m/s)

φ

Stable Unstable Poor Stabilization Cannot Achieve Condition

Measurements include:
• Flow rates
• Dynamic pressure
• Surface 

temperatures
• Time-averaged 

flame imaging
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Project Management Plan
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—Task 1 – Project management and planning

—Task 2 – Modification of current experimental facility with monitoring 

diagnostics and new hardware for transient control

—Task 3 – Map combustor timescales at target operating points

—Task 4 – Design of transient experiments

—Task 5 – Fuel split transients

—Task 6 – Equivalence ratio transients

—Task 7 – Fuel composition transients

—Task 8 – Data analysis and determination of prediction/quantification 

framework



Questions?
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Backup slides
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Multi-nozzle steady-state fuel-staging tests
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What is the purpose of these tests? What do we expect to learn?

• To determine the steady state flame structure at various fuel splits.

• To characterize the different flame structures that exist when fuel splitting is
varied, understand the fluid mechanic features that lead to those structures
and the nature of the transitions between flame structures.

• To determine the influence of fuel-splitting on self-excited instabilities.



Questions to answer from the steady-state fuel staging tests
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• What causes changes in flame structure with fuel splits? Does fuel splitting 
change the flow-field, flame phenomena (e.g. flame speed or heat of reaction), 
or both?

• How can we characterize thermal boundary conditions? What temperatures do 
we need to monitor?

• Can increasing fuel to the middle nozzle during an unstable test condition make 
it stable?

• Are there cases where increasing fuel to the middle nozzle during a stable test 
condition makes it unstable?

• Can fuel staging improve flame stability such that the combustor can be 
operated closer to the LBO limit than without staging? 



Stable Unstable Poor Stabilization Cannot Achieve Condition

Data from unforced and forced flames are available in a 
range of operating conditions
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An inlet temperature of 200°C and an inlet velocity of 25 m/s 
was chosen for the steady-state tests
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Inlet temperature = 200°C
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Based on the stability 
maps of fully premixed 
operation, this condition 
was chosen as it enables 
both transition in flame 
structure and transition 
to instability by varying 
fuel flow rate  

Stable Unstable Poor Stabilization Cannot Achieve Condition



Stability map for GE-15 single-nozzle experiment (TPM)
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Tin = 100°C Tin = 200°C Tin = 275°C

φ 25 m/s 30 m/s 35 m/s 25 m/s 30 m/s 35 m/s 30 m/s 35 m/s

0.50 LBO LBO LBO LBO LBO LBO

0.525 LBO LBO LBO 57 Hz 72 Hz 81 Hz 97 Hz 106 Hz

0.55 LBO 68 Hz 84 Hz 78 Hz 86 Hz 111 Hz 105 Hz 116 Hz

0.60 71 Hz 96 Hz 117 Hz 94 Hz 110 Hz 124 Hz 111 Hz 125 Hz

0.65 89 Hz 114 Hz 124 Hz 101 Hz 115 Hz 125 Hz 117 Hz 127 Hz

0.70 104 Hz 117 Hz 129 Hz 112 Hz 118 Hz 128 Hz 129 Hz 145 Hz



Stability map for GE-15 single-nozzle experiment (FPM)
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Tin=100 C Tin=150 C Tin=200 C

φ 20 m/s 25 m/s 30 m/s 20 m/s 25 m/s 30 m/s 20 m/s 25 m/s 30 m/s

0.50 LBO LBO LBO LBO LBO LBO LBO

0.55 LBO

0.60

0.65

0.70

0.75



Measurements that will be made in steady state tests
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• Flame structure will be characterized using digital photographs and            
line-of-sight CH* chemiluminescence images.

• K-type thermocouples will be used to make necessary temperature 
measurements to determine thermal BCs.

• Static pressure will be measured upstream and downstream of the swirler
to obtain the mean velocity in each nozzle.

• PCB pressure transducer mounted on dump plane will measure pressure 
fluctuation in the combustor.

• Additional measurements? PLIF? 

PLIF: May provide useful information about the nature of flame-flame 
interaction along the center plane



Fuel injection strategy for staging
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Two options for adding additional fuel to middle nozzle: 

(1) Inject fuel at swirler technically premixed

(2) Inject fuel at air manifold with a choke  fully premixed

The main difference between 
these then becomes the type of 
governing mechanisms during 
the unstable flame case

Poravee showed using acetone PLIF, that the fuel and 
air are well mixed at the nozzle exit of the GE-15 nozzle



Fuel injection strategy for staging
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S

Middle 
Nozzle

We currently don’t 
have a flowmeter 
that can accurately 
measure as low of a 
flow rate as we are 
planning to run

Backup option is to 
use a rotameter



Flame-flame and flame-wall regions are separated from the 
line-of-sight images to look at relative contribution to Q’

①
Outer

③
Outer

②
Middle + 2*Outer

Chemiluminescence emission 
from flame-flame interaction 

region

CH*F-F = ② - [①+③]

Chemiluminescence emission 
from flame-wall interaction 

region

CH*F-W = CH*Total - CH*F-F

The regions are separated based on the locations of the centers of the outer nozzles



The majority of heat release rate occurs in the flame-flame 
interaction region when the middle flame is attached

MFL MFA



Very limited data is available on the behavior of flames at 
different fuel splits except in the cases of flame piloting
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Transient operation of a Siemens SGT-200 
(Bulat et al. 2007)

Source:  Davis and Black, “Dry Low NOx Combution Systems for GE Heavy-Duty Gas Turbines”
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