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In 2013, 50% of new power generation capability came from
natural gas, which was used in gas turbine power plants
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These additions were split between “peaking plants” and
combined cycle plants, both of which use gas turbines
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Objective of the program is to understand, quantify, and
predict combustion instability during fransient operation

— Two major deliverables for the program:

1. Fundamental understanding of flow and flame
behavior during combustion transients and
mechanisms for transition to instability

2. Development of a stability prediction or
guantification framework



Objective of the program will be achieved through
experimental study and close ties with industry

— Experimental program that includes two separate,
complementary facilities

— Development of quantification and prediction
frameworks will aid in applying the results from this work
to other facilities, including industrial hardware

— Cost-share and partnership from GE Global Research will
provide industry feedback and internship opportunities for
students on project
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Very few studies have discussed the onset or control of
instabilities during transient operation, but it's a common issue
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Engine load is typically varied by either varying fuel staging or
the equivalence ratio of certain fuel nozzles
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Most of the focus on transient operation has been on
hysteretic or triggering behavior in combustion systems
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Most of the focus on transient operation has been on
hysteretic or triggering behavior in combustion systems
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Most of the focus on transient operation has been on
hysteretic or triggering behavior in combustion systems
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Instabilities may arise as a result of changes in flame shape and
flame anchoring that occur with variation in equivalence ratio

Photographs of multi-nozzle flame at U = 25 m/s, T, = 200°C



U =22.5m/s, T,, = 200°C, fully premixed, unforced
¢ =0.65 ¢ =0.60 @ =0.55 ¢ =0.50




To further investigate the structure of the multi-nozzle flame,
3-D image sets were obtained at ¢ =0.60 and ¢ =0.48

b = 0.48 ¢ =0.48




Slides through the flame shows center flame lift-off and
significant flame-wall interaction at ¢ = 0.48




Flame-flame interaction dominates at ¢ = 0.6 and center
flame, now attached, shows significant non-axisymmetry




Data from our multi-nozzle combustor shows that fuel splitting
changes flame structure and oscillation during instability

¢ = 0.6 in all nozzles
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Experimental facilities include both a single-nozzle and multi-
nozzle combustor, fuel splitting on multi-nozzle only




Three types of transients will be considered in the program
that mimic the types of transients used in operational turbines
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The transients will be quantified using three different metrics:
amplitude, timescale, and direction
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The transients will be quantified using three different metrics:
amplitude, timescale, and direction
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The transients will be quantified using three different metrics:
amplitude, timescale, and direction
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Competition of timescales defines the path of the transient
and could impact the final state of the transient event

Increasing Timescale
Chemical Turbulent Recirculation Heat x-fer
Timescales Timescales Timescales Timescales
Acoustic
Timescales
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Competition of timescales defines the path of the transient
and could impact the final state of the transient event
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Varying the transient timescales allows for different processes
to equilibrate during the transient, changing the path
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Project structure includes three stages of experimentation:
mapping, transients, and quantification

Mapping Transients Quantification
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Mapping will include characterization of stability and
important combustor timescales

Mapping
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Transient experiments will be designed based on the mapping,
varying the transient amplitude, direction, and timescale

Transients
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Both the transient input and the combustor response will be
guantified and a describing framework will be developed
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Stability limits of certain operating points are already known,
current work focuses on mapping instability with fuel splits

Inlet temperature = 200°C Measurements include:
U (m/s) * Flow rates
15 (175 20 | 225| 25 | 275 | 30 * Dynamic pressure

0.40 e Surface
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Stable -Unstable Poor Stabilization -Cannot Achieve Condition
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Project Management Plan

—Task 1 — Project management and planning

—Task 2 — Modification of current experimental facility with monitoring
diagnostics and new hardware for transient control

—Task 3 — Map combustor timescales at target operating points

—Task 4 — Design of transient experiments

—Task 5 — Fuel split transients

—Task 6 — Equivalence ratio transients

—Task 7 — Fuel composition transients

—Task 8 — Data analysis and determination of prediction/quantification

framework .
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Multi-nozzle steady-state fuel-staging tests

What is the purpose of these tests? What do we expect to learn?

To determine the steady state flame structure at various fuel splits.

To characterize the different flame structures that exist when fuel splitting is
varied, understand the fluid mechanic features that lead to those structures
and the nature of the transitions between flame structures.

To determine the influence of fuel-splitting on self-excited instabilities.



Questions to answer from the steady-state fuel staging tests

e What causes changes in flame structure with fuel splits? Does fuel splitting
change the flow-field, flame phenomena (e.g. flame speed or heat of reaction),
or both?

 How can we characterize thermal boundary conditions? What temperatures do
we need to monitor?

e Canincreasing fuel to the middle nozzle during an unstable test condition make
it stable?

e Are there cases where increasing fuel to the middle nozzle during a stable test
condition makes it unstable?

e Can fuel staging improve flame stability such that the combustor can be
operated closer to the LBO limit than without staging?



Data from unforced and forced flames are available in a
range of operating conditions

Stable -Unstable Poor Stabilization -CannotAchieveCondition

Inlet temperature = 100°C Inlet temperature = 150°C
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An inlet temperature of 200°C and an inlet velocity of 25 m/s
was chosen for the steady-state tests

Inlet temperature =200°C

U (m/s) Based on the stability

15

17.5| 20 | 225 25 | 275 30 maps of fully premixed

0.40

operation, this condition

0.45

was chosen as it enables

0.50

both transition in flame

¢ | 0.55

structure and transition

0.60

to instability by varying

0.65

fuel flow rate

0.70

Stable

- Unstable Poor Stabilization - Cannot Achieve Condition

43



Stability map for GE-15 single-nozzle experiment (TPM)
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Stability map for GE-15 single-nozzle experiment (FPM)
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Measurements that will be made in steady state tests

* Flame structure will be characterized using digital photographs and
line-of-sight CH* chemiluminescence images.

» K-type thermocouples will be used to make necessary temperature
measurements to determine thermal BCs.

e Static pressure will be measured upstream and downstream of the swirler
to obtain the mean velocity in each nozzle.

e PCB pressure transducer mounted on dump plane will measure pressure
fluctuation in the combustor.

e Additional measurements? PLIF?

PLIF: May provide useful information about the nature of flame-flame
interaction along the center plane



Fuel injection strategy for staging

Two options for adding additional fuel to middle nozzle:

(1) Inject fuel at swirler = technically premixed

(2) Inject fuel at air manifold with a choke = fully premixed —

Poravee showed using acetone PLIF, that the fuel and
air are well mixed at the nozzle exit of the GE-15 nozzle

0.60 0.65 0.70 0.75 0.80

The main difference between
these then becomes the type of
governing mechanisms during
the unstable flame case

Figure B-4. Spatial distribution of fuel-air mixture results.



Fuel injection strategy for staging
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Flame-flame and flame-wall regions are separated from the
line-of-sight images to look at relative contribution to Q'

The regions are separated based on the locations of the centers of the outer nozzles

Chemiluminescence emission
from flame-flame interaction
region

CH* = @ - [®+®]

Chemiluminescence emission
from flame-wall interaction
region

CH*ew = CH* g0 - CH¥ ¢



The majority of heat release rate occurs in the flame-flame
interaction region when the middle flame is attached
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Very limited data is available on the behavior of flames at
different fuel splits except in the cases of flame piloting
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