Effects of Exhaust Gas Recirculation (EGR) on Turbulent Combustion and Emissions in Advanced Gas Turbine Combustors with High-Hydrogen-Content (HHC) Fuels

Michael E. Mueller

Computational Turbulent Reacting Flow Laboratory (CTRFL) Department of Mechanical and Aerospace Engineering Princeton University

DOE Award No. DE-FE0011822

2015 UTSR Workshop Atlanta, GA November 3-5, 2015

LES Modeling

- Model Development
 - Premixed Flamelet Model
 - Radiation Heat Losses
- RATS Burner Simulations
 - Computational Details
 - Effects of Diluents
- Future Work

Model Development

Premixed Flamelet Model

 Use one-dimensional premixed flamelet solutions to map thermochemical state onto a progress variable

•
$$\rho_u S_L \frac{dY_k}{dx} = -\frac{d}{dx} (\rho Y_k V_k) + \dot{m}_k$$

- For example: $\dot{m}_k(Y_k, T) \rightarrow \dot{m}_k(Z, C)$
- Solve for progress variable (and mixture fraction) in LES

•
$$\frac{\partial \overline{\rho} \tilde{C}}{\partial t} + \frac{\partial \overline{\rho} \tilde{u}_j \tilde{C}}{\partial x_j} = \frac{\partial}{\partial x_j} \left(\overline{\rho} \widetilde{D} \frac{\partial \tilde{C}}{\partial x_j} \right) - \frac{\partial}{\partial x_j} \left(\overline{\rho} \widetilde{u_j} C - \overline{\rho} \widetilde{u}_j \tilde{C} \right) + \overline{\dot{m}}_C$$

- Retrieve local thermochemical state from flamelet solutions
- For radiation, introduce heat loss parameter H (solved for in LES and flamelets) and flamelets at variable enthalpy
 - $\dot{m}_k(Y_k, T, H) \rightarrow \dot{m}_k(Z, C, H)$
- Additional transport equation solved in LES for NO mass fraction

Model Development

- Radiation Heat Losses
 - Heat losses
 - Compute steady flamelets with a fraction
 e of the radiation source term
 - Avoids unphysically small unburned gas temperatures and/or product dilution
 - Heat gains
 - Increase unburned gas temperature

- Configuration: RATS Burner¹
 - Methane/air: $\phi = 0.9$
 - $-U_{iet} = 15 \text{ m/s}$
 - $-\text{Re} \approx 8,500$
 - Varying water dilution
 - 0%-10% by volume
 - N2 dilution to maintain constant flame temperature of 2025 K
 - Pilot

Shift

Ctrfl

• Stoichiometric methane/air without dilution with $U_u = 1 \text{ m/s}$

• Code: NGA¹

Shift

Ctrfl

- Numerical Methods and Turbulence Models
 - Space: Second-order velocity; third-order scalars
 - Time: Second-order semi-implicit
 - Dynamic Smagorinsky models for turbulent transport
- Computational Domain
 - 1.6M grid points (256 × 192 × 32)
 - Domain length: 20H
- Boundary Conditions
 - Jet: Forced isotropic turbulence with matched integral scale and turbulence intensity
 - Coflow: Weak to mimic entrainment
 - Pilot: Stoichiometric mixture with consistent dilution and unburned velocity of 1 m/s (little sensitivity)

• Effect on Flame Structure

 Little change in flame height with increasing water dilution, consistent with experimental measurements

Effect on Emissions

- Decrease then increase in NO consistent with temperature
 - Correlation with temperature does not indicate chemical effect
 - Temperature a result of product recirculation in 0% and 5% flames

- Larger domain reduces recirculation from the outflow
- Little effect on flame height but significant downstream

Future Work

- Model Development
 - Detailed radiation modeling implementation
 - Discrete ordinates method
 - Start with weighted sum of gray gases for optical properties
 - Coupling with premixed flamelet model
- (PA)RAT(S) Burner Simulations
 - Better entrainment boundary condition
 - Unconfined flames without coflow are computationally challenging!
 - High-pressure simulations of PARAT burner
 - Effect of radiation model
 - Effects of diluents on emissions

