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Motivation
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Motivation
• Integrated Gasification Combined Cycle (IGCC)
• Steam reforming of natural gas or liquid hydrocarbons
• Waste Treatment – Digester Gas
• Biomass
• “Power to Gas”

Source H2 CO CH4 CO2 N2 C2 C3

High H2 90-100 0-10

Process and refinery gas 25-55 0-10 30-65 0-5 0-25 0-25

Gasified coal/petcoke (O2 Blown) 35-40 45-50 0-1 10-15 0-2

Gasified biomass 15-25 15-35 0-5 5-15 30-50

Digester gas 0-1 50-75 25-50 0-10

Power to Gas 0-20? 75-80 0-5 0-1

High hydrogen content fuels
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Motivation
• Impact of Alternative Fuels on gas turbine combustion

– Emissions

– Operability issues
• Lean Blow Off (Static stability)
• Flashback
• Combustion Dynamic (Dynamic stability)

High hydrogen content fuels
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Motivation

Premixed Fuel
and Air

Combustion 
Chamber

Premixed Operation

• Reduces temperature 
variation and improves 
emission

• Potentially leads to 
flashback

High-Hydrogen Fuel Operation

•Higher risk of flashback

Normal Operation

Premixed Fuel
and Air

Combustion 
Chamber

Flashback

Premixer/Injector:  90/10 H2/NG

Before Flashback After Flashback
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Background
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Flashback
• Flame propagation from the combustion zone into premixing section of 

combustors/1

 Flashback in the core flow

 Combustion induced vortex breakdown (CIVB)

 Flashback due to combustion instabilities

 Flashback in the wall boundary layer
Propagation of flame upstream of the flow inside the boundary layer Jet flame

/1  T. Lieuwen, V. McDonell, D. Santavicca, and T. Sattelmayer, Combust. Sci. and 
Tech. 180 (6) (2008)1169–1192.
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Structure of Burner Flames

Critical boundary layer velocity gradient
 Laminar flow

Lewis, B., & Von Elbe, G. Stability and structure of burner flames 1943
Von Elbe, G., & Mentser, M. Further Studies of the Structure and Stability of Burner Flames 1945

Putnam, A. A., & Jensen, R. A. Application of dimensionless numbers to flash-back and other combustion phenomena 1949
Thomas, N. Structure and stability of burner flames 1949

Wohl, K. Quenching, flash-back, blow-off-theory and experiment 1953
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Effects of Various Factors
Grumer, J. Predicting burner performance with interchanged fuel gases 1949

Grumer, J., & Harris, M. E. Predicting interchangeability of fuel gases interchangeability of oil gases or 
propane-air fuels with natural gases 1952

Grumer, J., & Harris, M. E. Flame-stability limits of methane, hydrogen, and carbon monoxide mixtures 1952

Grumer, J., & Harris, M. E. Temperature dependence of stability limits of burner flames 1954
Dugger, G. L. Flame stability of preheated propane-air mixtures 1954

Grumer, J., & Harris, M. E. Flame-stability limits of ethylene, propane, methane, hydrogen, and nitrogen 
mixtures 1955

Bollinger, L. E., & Edse, R. Effect of burner-tip temperature on flashback of turbulent hydrogen-oxygen flames 1956

Fine, B. Stability limits and burning velocities for some laminar and turbulent propane and 
hydrogen flames at reduced pressure 1957

Kurz, P. F. Stability limits of flames of ternary hydrocarbon mixtures 1957

Kurz, P. F. Some factors influencing stability limits of Bunsen flames 1957

Berlad, A. L., & Potter Jr, A. E. Relation of boundary velocity gradient for flash-back to burning velocity and 
quenching distance 1957

Van Krevelen, D. W., & 
Chermin, H. A. G. Generalized flame stability diagram for the prediction of interchangeability of gases 1958

Fine, B. Flashback of laminar and turbulent burner flames at reduced pressure 1958

Fine, B. Effect of Initial Temperature on Flash Back of Laminar and Turbulent Burner 
Flames. 1959

Yamazaki, K., & Tsuji, H. An experimental investigation on the stability of turbulent burner flames 1961
Caffo, E., & Padovani, C. Flashback in premixed air flames 1963
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Effects of Various Factors
• Fuel compositions (natural gas, propane, ethane, hydrocarbons mixtures)
• Preheated temperature
• Limited Pressures
• Burner tip temperature
• Burner diameter
• Some Turbulent flames

Berlad, A. L. and A. E. Potter

Fine, B.
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Burner Material Effect
• Flash Back of Turbulent Hydrogen-Oxygen Flames

Bollinger, L. E., & Edse, R. (1956). Effect of Burner-Tip Temperature on Flash Back of Turbulent Hydrogen-Oxygen Flames. 
Industrial & Engineering Chemistry, 48(4), 802-807.c
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• No correlation

Thermal coupling

Direct impacts on the flame speed and flashback propensity
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Burner Thickness Effect

• Increase of thickness
 Constant inside diameter

• Indicates need for further investigation

Reduces tip temperature

Increase critical velocity gradient??

Bollinger, L. E., & Edse, R. (1956). Effect of Burner-Tip Temperature on Flash Back of Turbulent Hydrogen-Oxygen Flames. 
Industrial & Engineering Chemistry, 48(4), 802-807.c
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Effects of Various Factors
Khitrin, L. N. Peculiarities of laminar-and turbulent-flame flashbacks 1965
Cescotti, R. Burners and flame technology 1968

Plee, S. L., & Mellor, A. M. Review of flashback reported in prevaporizing-premixing combustors 1978

Ball, D. A.,& Putnam, A. A. Relation to burning velocity, quenching distance, and flash-back velocity gradient for 
low-and intermediate-Btu gases 1978

Putnam, A. A., & Ball, D. A. Effect of fuel composition on relation of burning velocity to product of quenching distance 
and flashback velocity gradient 1980

Lee, S. T., & T'ien, J. S. A numerical-analysis of flame flashback in a premixed laminar system 1982

Fox, J. S., & Bhargava, A. Flame speed and flashback gradient for simulated biomass gasification products 1984

Karim, G. A., & Kibrya, M. 
G. 

Flashback limits and flame propagation through a premixed stream of fuel and air near 
the lean flammability limit 1984

Karim, G. A., Wierzba, I., & 
Hanna, M. 

The blowout limit of a jet diffusion flame in a coflowing stream of lean gaseous fuel-air 
mixtures 1984
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Different Flashback Mechanisms

• Swirling Flows:  Combustion induced vortex breakdown (CIVB)
• Flashback in the core flow
• Syngas 

Kroner, M., and Fritz, J., Flashback limits for combustion induced vortex breakdown in a swirl burner 2002
Kroner, M., and Fritz, J., Flashback limits for combustion induced vortex breakdown in a swirl burner 2003

Davu, D., Franco, R. Investigation on flashback propensity of syngas premixed flames 2005
Xu, G., Tian, Y., Flashback limit and mechanism of methane and syngas fuel 2006

Burmberger, S., Hirsch, 
C., Designing a radial swirler vortex breakdown burner 2006

Noble, D. R., Zhang, Q., Syngas Mixture Composition Effects Upon Flashback and Blowout 2006
Noble, D. R., Q. Zhang, Syngas fuel composition sensitivities of combustor flashback and blowout. 2006

Song, Q., Fang, A. Dynamic and flashback characteristics of the syngas premixed swirling combustors 2008
Littlejohn, D., Cheng, R. 

K.
A comparison between the combustion of natural gas and partially reformed natural gas in an 

atmospheric lean premixed turbine-type combustor 2008

Littlejohn, D., Cheng, R. 
K. Laboratory investigations of a low-swirl injector with H2 and CH4 at gas turbine conditions 2009

Shelil, N., 
Bagdanavicius, A. Premixed swirl combustion and flashback analysis with hydrogen/methane mixtures 2010

Syred, N., Abdulsada, M. The effect of hydrogen containing fuel blends upon flashback in swirl burners 2011
Jejurkar, S. Y., & Mishra, 

D. P. Flame stability studies in a hydrogen-air premixed flame annular microcombustor 2011
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Synthesis Gas

• High Hydrogen fuels/Syngas
• Advanced visualization/diagnostics 
• Computational Fluid Dynamics

Wang, Q., McDonell, V. Correlating flashback tendencies for premixed injection of hydrogen and methane mixtures at 
elevated temperature and pressure 2009

Daniele, S., Jansohn, 
P. Flashback propensity of syngas flames at high pressure: diagnostic and control 2010

Eichler, C., & 
Sattelmayer, T.

Experiments on flame flashback in a quasi-2D turbulent wall boundary layer for premixed 
methane-hydrogen-air mixtures 2011

Eichler, C., & 
Sattelmayer, T.

Experimental investigation of turbulent boundary layer flashback limits for premixed hydrogen-
air flames confined in ducts 2011

Dam, B., Love, N., Flashback propensity of syngas fuels. 2011
Syred, N., Abdulsada, 

M. The effect of hydrogen containing fuel blends upon flashback in swirl burners 2011

Kedia, K. S., & 
Ghoniem, A. F.

Mechanisms of stabilization and blowoff of a premixed flame downstream of a heat-conducting 
perforated plate 2012

Shaffer, B., Duan, Z., Study of Fuel Composition effects on flashback using a confined jet flame burner 2013

Lin, Y. C., Daniele, S., Turbulent flame speed as an indicator for flashback propensity of hydrogen-rich fuel 
gases 2013

Duan, Z., Shaffer, B., Study of fuel composition, burner material, and tip temperature effects on flashback of 
enclosed jet flame 2013

Duan, Z., Shaffer, B., Influence of burner material, tip temperature, and geometrical flame configuration on 
flashback propensity of H2-air Jet flames 2014
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Systematic Studies

Factor Min Max Vals.

Fuel_H2 25% 100% 4

Fuel_CO 0% 75% 4

Fuel_CH4 0% 75% 4
Inlet 

temperature 300K 810K 4

Adiabatic 
temperature 1700K 1900K 2

Burner 
material

Quartz 
glass

Stainles
s steel 2

[1] Z. Duan, B. Shaffer, V. McDonell, J. Eng. Gas. Turb. Power, 135 (12) (2013) 
121504.
[2] Z. Duan, B. Shaffer, V. McDonell, G. Baumgartner, T. Sattelmayer. J. Eng. Gas. 
Turb. Power 136(2) (2014) 021502 lt / δf
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Distributed reactions

Thin reaction zones

Corrugated flamelets

Wrinkled flamelets

• Atmospheric studies1,2 found burner material, tip temperature/inlet 
temperature and flame confinement impact flashback propensity, while 
flame enclosure diameter and tube diameter play a negligible role

• Empirical correlations improved if burner tip temperature is used rather 
than the inlet temperature. 

Limited insight into gas turbine related conditions
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Gas Turbine Premixer Conditions
• Daniele et al. (2010,2013) investigated flashback 

propensity of syngas flame at gas turbine conditions
 Systematic studies were not carried out
 Limited data set

Daniele, S., Jansohn, P., & Boulouchos, K. (2010, October). Flashback Propensity of Syngas Flames at High Pressure: Diagnostic and
Control. In ASME Turbo Expo 2010: Power for Land, Sea, and Air (pp. 1169-1175). American Society of Mechanical Engineers.
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Goals and Objectives
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Goals
• Develop and validate a comprehensive model for 

prediction of flashback under gas turbine premixer
conditions
– The model will incorporate effect of ambient pressure as well as 

thermal coupling between the flame and the burner rim.

• Provide detailed insight towards understanding 
flashback propensity in jet flames 
at gas turbine related conditions
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Objectives & Timeline

Milestone Title

Planned 

Completion 

Date

Actual 

Completion 

Date

Verification Method Comments

Project Management 8/2016

Test Plan Fuels/Modules 

Draft

Final

12/2013

1/2014

3/2014
Consensus from OEMs and 

DOE on plan Complete

Complete

Fabrication of Modules 2/2014 5/2014-9/2015
Photos of completed 

installation and test hardware
Complete

Diagnostics/Rig Setup and 

Commissioned 5/2014 10/2014

Comparison of commissioning 

data with literature data
Complete

Experimental Studies

Phase I

Phase II

4/2015

12/2015

8/2015

8/2015

Comparison of commissioning 

data with literature data
90% Complete

Analysis and Model 

Development

Empirical Model I

Empirical Model II

Physics Base Model

7/2015

1/2016

4/2016

8/2015

current

Predicted vs Actual Results, 

Goodness of Fit

EM: 90% Complete
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Experiment
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Experimental Setup
• Pressure: 15 atm

• Preheat temperature: 1100 K

• Air flow rate: 1.5 kg/sec continuous

• Fuel: High-pressure supply
 Liquid fuels
 Gaseous fuel blends
 Natural Gas: 0.1 kg/sec, 35 atm

• Optical access

• Water quench system

40 cm 15
0 

cm
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Experimental Setup

Preheat air Preheat air

Observation window

Quench/
Back-pressure 
valve

Premixed Jet Flame

Venturi fuel/air mixing

Perforated plate
Interchangeable 
burner head

Fuel injection

Pilot fuel, ignited 
with YAG laser 

Thermocouples

1

2

3

4

5
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Experimental Setup

Nd:YAG laser Burner
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Testing
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Test Parameters
• Pressure

 3 atm to 9 atm

• Preheated temperature
 300 K to 700 K

• Fuel compositions

• Burner materials

Material
Heat 

Capacity

Heat 

Conductivity
Density

[-] [J/(g*C)] [W/(m*k)] [g/cm3]

SS-304 0.500 21.5 8.0

Copper 0.385 385.0 7.9

Ceramic 0.456 0.9 4.0

Volume percent
H2 100 50

CH4 0 50
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Testing
P=7 atm
Tu=500 K, Inlet temperature
Ub=35 m/s, Bulk Velocity
Hydrogen fuel
Stainless steel Burner head

Air-fuel mixture
Pilot

Pilot

Air-fuel mixture
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Flashback Monitoring

• Flashback strategy
Constant air mass flow rate

Am
pl

itu
de

Flashback

Pilot flame Stabilized 
flame

Approach 
flashback

Flashback Tip temperature
Diff. pressure

Tip temperature
Equivalence ratio
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Results & Analysis
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Results

Higher velocity gradient Higher flashback propensity

Equivalence Ratio
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Results

Higher velocity gradient Higher flashback propensity
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Analysis
Symbol Definition

Flow characteristics
�𝑈𝑈 bulk velocity of the mixture

u’ turbulent intensity

Thermodynamics properties of flow

𝜌𝜌𝑢𝑢
density based on unburnt

conditions

𝜇𝜇𝑢𝑢
kinetic viscosity based on 

unburnt conditions

𝑇𝑇𝑢𝑢 Unburnt temperature

𝑃𝑃𝑢𝑢 Unburnt pressure

𝛼𝛼𝑢𝑢
thermal diffusivity based on 

unburnt conditions

𝐶𝐶𝑃𝑃𝑢𝑢
thermal capacity based on 

unburnt conditions

𝑘𝑘𝑢𝑢
thermal conductivity based 

on unburnt conditions

𝐷𝐷𝑢𝑢
Mass diffusivity of fuel

composition into the mixture

Symbol Definition
Premixed flame characteristics

𝑇𝑇𝑓𝑓
adiabatic flame temperature 
based on unburnt conditions

𝑆𝑆𝐿𝐿𝑢𝑢
laminar flame speed based 

on unburnt conditions

𝐿𝐿𝐿𝐿𝐿𝐿 lower heating value based 
on unburnt conditions

𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡
Measured burner tip 

temperature

𝑔𝑔𝑐𝑐
critical velocity gradient 

when flashback happens

ℎ′ convective heat transfer 
coefficient

Ambient conditions
𝑇𝑇0 ambient temperature

𝑃𝑃0 ambient pressure

Burner properties

𝑘𝑘′ thermal conductivity of the 
burner material

𝑑𝑑 diameter of the burner

𝜃𝜃′ thickness of the burner wall
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Analysis
• Non-dimensional groups
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Model Performance

SS, H2

𝐷𝐷𝐷𝐷 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶. 𝐿𝐿𝐿𝐿1.68.𝑃𝑃𝐿𝐿𝑓𝑓1.91.
𝑇𝑇𝑢𝑢
𝑇𝑇0

2.57

.
𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡
𝑇𝑇𝑜𝑜

−0.49

.
𝑃𝑃𝑢𝑢
𝑃𝑃0

−2.1
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Model Performance

SS, H2

𝐷𝐷𝐷𝐷 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶. 𝐿𝐿𝐿𝐿1.68.𝑃𝑃𝐿𝐿𝑓𝑓1.91.
𝑇𝑇𝑢𝑢
𝑇𝑇0

2.57

.
𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡
𝑇𝑇𝑜𝑜

−0.49

.
𝑃𝑃𝑢𝑢
𝑃𝑃0

−2.1

Copper, H2
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Model Performance

SS, H2

𝐷𝐷𝐷𝐷 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶. 𝐿𝐿𝐿𝐿1.68.𝑃𝑃𝐿𝐿𝑓𝑓1.91.
𝑇𝑇𝑢𝑢
𝑇𝑇0

2.57

.
𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡
𝑇𝑇𝑜𝑜

−0.49

.
𝑃𝑃𝑢𝑢
𝑃𝑃0

−2.1

Copper, H2

Ceramic, H2



UTSR Workshop, Atlanta, GA, November 4, 2015 38/46

Interpretation
• SS Burner Head

– Effect of Inlet Temp, Bulk Velocity, and Pressure on 
Equivalence Ratio at Flashback

• Measurements vs Model

𝜙𝜙𝐹𝐹𝐹𝐹 = 𝑃𝑃−𝑚𝑚
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Interpretation
• SS Burner Head

– Impact of Pressure, Inlet Temperature, and Equivalence Ratio 
on Tip Temperature at Flashback

• Model vs Measurements
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Interpretation
• SS Burner Head

– Effect of Pressure and Equivalence Ratio on Bulk Velocity
at Flashback (Prediction)
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Validation
• Comparison to Other Data Sets in Literature

– Danielle, et al., 2010
• Syngas/Air jet flames studied in context of global consumption 

based turbulent flame speed measurements

Daniele, S., Jansohn, P., & Boulouchos, K. (2010). Flashback Propensity of Syngas Flames at High Pressure: Diagnostic and Control.
Paper GT2010-23456 TurboExpo 2010, Vancouver, Canada, June

Used to control
flashback
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Validation

SS, H2

𝐷𝐷𝐷𝐷 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶. 𝐿𝐿𝐿𝐿1.68.𝑃𝑃𝐿𝐿𝑓𝑓1.91.
𝑇𝑇𝑢𝑢
𝑇𝑇0

2.57

.
𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡
𝑇𝑇𝑜𝑜

−0.49

.
𝑃𝑃𝑢𝑢
𝑃𝑃0

−2.1

Copper, H2

Ceramic, H2

Daniele et al., 
H2-CO
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Validation

Page, D., Shaffer, B. and McDonell, V. (2012). Establishing Operating Limits in a Commercial Lean Premixed Combustor Operating on
Synthesis Gas Pertaining to Flashback and Blowout. Paper GT2012-69355, TurboExpo 2012, Copenhagen, June

2 planes 
of 
Injectors

Bottom Plane

Outer Liner

Inner Liner

Recuperator Wall

Hot Products

• Comparison to Page, et al., 2012
Capstone C65 Microturbine Combustor

Flashback Detection
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Validation

SS, H2

𝐷𝐷𝐷𝐷 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶. 𝐿𝐿𝐿𝐿1.68.𝑃𝑃𝐿𝐿𝑓𝑓1.91.
𝑇𝑇𝑢𝑢
𝑇𝑇0

2.57

.
𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡
𝑇𝑇𝑜𝑜

−0.49

.
𝑃𝑃𝑢𝑢
𝑃𝑃0

−2.1

Copper, H2

Ceramic, H2

Daniele et al., H2-CO

Page et al., H2-CO
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Validation

SS, H2

𝐷𝐷𝐷𝐷 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶. 𝐿𝐿𝐿𝐿1.68.𝑃𝑃𝐿𝐿𝑓𝑓1.91.
𝑇𝑇𝑢𝑢
𝑇𝑇0

2.57

.
𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡
𝑇𝑇𝑜𝑜

−0.49

.
𝑃𝑃𝑢𝑢
𝑃𝑃0

−2.1

Copper, H2

Ceramic, H2

Daniele et al., H2-CO
Page et al., H2-CO

Page et al., H2-NG
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Summary
• Boundary layer flashback experiments have been 

carried out at elevated pressures and temperatures for 
various bulk velocities, burner materials, and 
equivalence ratios
– Buckingham Pi theorem applied to develop correlation

• The resulting correlation was applied to current data as 
well as literature data and found to provide reasonable 
ability to predict flashback tendencies for the 
parameters studied

𝐷𝐷𝐷𝐷 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶. 𝐿𝐿𝐿𝐿1.68.𝑃𝑃𝐿𝐿𝑓𝑓1.91.
𝑇𝑇𝑢𝑢
𝑇𝑇0

2.57

.
𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡
𝑇𝑇𝑜𝑜

−0.49

.
𝑃𝑃𝑢𝑢
𝑃𝑃0

−2.1
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Normalized Axial Velocity (U/Um)
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Numerical Method (RANS)

Experimental Setup
• Velocity profile using LDV

Fully developed turbulent flow

Venturi

40 cm



UTSR Workshop, Atlanta, GA, November 4, 2015 48/46

Fuel/Air Mixing

contour of molar concentration for pure hydrogen fuel

Mixing performance
• Computational modeling

X

r/R=0
r/R=0.3
r/R=0.5
r/R=0.7

Fuel injection

Premixing tube

Venturi fuel/air mixing

Homogeneous mixture at premixing tube outlet
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Results

SS, H2
Copper, H2
Ceramic, H2
Daniele et al., H2-CO
Page et al., H2-CO
Page et al., H2-NG
Copper, NG
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Alternative Formulation
• Lin and Danielle (2013)

– Proposed correlation based on turbulent flame speed

– Facilitates incorporation of turbulence levels

𝑆𝑆𝑇𝑇
𝑆𝑆𝐿𝐿

≈
𝑃𝑃
𝑃𝑃0

𝑚𝑚 𝑢𝑢′

𝑆𝑆𝐿𝐿

𝑛𝑛

𝑔𝑔𝑐𝑐 = 𝑓𝑓 𝐿𝐿𝐿𝐿, 𝑆𝑆𝐿𝐿 ,𝑢𝑢′,
𝑃𝑃
𝑃𝑃0

,𝛼𝛼
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Results
Pressure
• 3 atm to 7 atm

Preheated temperature
• 300 K to 500 K

Fuel
• Hydrogen
• Daniele et al. 2010 
• Methane-Hydrogen

Burner materials
• Stainless steel
• Copper

𝑫𝑫𝑫𝑫 = 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 .𝑷𝑷𝑷𝑷𝑭𝑭𝟏𝟏.𝟗𝟗𝟗𝟗. 𝑳𝑳𝑷𝑷𝟏𝟏.𝟗𝟗.
𝑻𝑻𝒖𝒖
𝑻𝑻𝟎𝟎

𝟐𝟐.𝟏𝟏

.
𝑻𝑻𝑪𝑪𝒕𝒕𝒕𝒕
𝑻𝑻𝒖𝒖

−𝟎𝟎.𝟗𝟗𝟐𝟐

.
𝑷𝑷𝒖𝒖
𝑷𝑷𝟎𝟎

−𝟏𝟏.𝟓𝟓𝟓𝟓
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Results

𝑫𝑫𝑫𝑫 = 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 .𝑷𝑷𝑷𝑷𝑭𝑭𝟐𝟐.𝟐𝟐. 𝑳𝑳𝑷𝑷−𝟗𝟗.𝟏𝟏𝟏𝟏.
𝑻𝑻𝒖𝒖
𝑻𝑻𝟎𝟎

𝟏𝟏.𝟓𝟓𝟔𝟔

.
𝑻𝑻𝑪𝑪𝒕𝒕𝒕𝒕
𝑻𝑻𝒖𝒖

−𝟎𝟎.𝟗𝟗𝟑𝟑

.
𝑷𝑷𝒖𝒖
𝑷𝑷𝟎𝟎

−𝟏𝟏.𝟓𝟓𝟔𝟔

Combustion regimes

Atmospheric data

lt / δf

u' t
/S

L

10-1 100 101 102 103 10410-1

100

101

102

103

Distributed reactions

Thin reaction zones

Corrugated flamelets

Wrinkled flamelets
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Test Plan



UTSR Workshop, Atlanta, GA, November 4, 2015 54/46

Test Plan Approach
• To help guide the Test Plan, additional analysis of 

flashback of jet flames was carried out to generate a 
clearer set of required information to accomplish the 
project goals
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Test Plan Analysis
• Atmospheric studies identified burner material, tip 

temperature/inlet temperature and flame confinement 
have a strong impact on flashback propensity, while 
flame enclosure diameter and tube diameter play a 
negligible role

• Better correlations can be obtained if the burner tip 
temperature is used as the representative temperature 
rather than the inlet temperature. 
– Ttip-based SL able to determine flashback propensity in terms 

of critical velocity gradient (Duan et al. 2013)

𝑔𝑔𝑐𝑐_𝑡𝑡𝑡𝑡𝑡𝑡 =
(155 + 546.4𝛼𝛼𝑡𝑡𝑡𝑡𝑡𝑡 + 5363.19𝑑𝑑𝑞𝑞_𝑡𝑡𝑡𝑡𝑡𝑡 − 0.71𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡 − 1.1𝑆𝑆𝐿𝐿_𝑡𝑡𝑡𝑡𝑡𝑡 + 1.1𝛼𝛼𝑡𝑡𝑡𝑡𝑡𝑡𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡

−763.3𝑑𝑑𝑞𝑞_𝑡𝑡𝑡𝑡𝑡𝑡𝑆𝑆𝐿𝐿_𝑡𝑡𝑡𝑡𝑡𝑡 − 0.0023𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑆𝑆𝐿𝐿_𝑡𝑡𝑡𝑡𝑡𝑡)

2

STUDY OF FUEL COMPOSITION, BURNER MATERIAL, AND TIP 
TEMPERATURE EFFECTS ON FLASHBACK OF ENCLOSED JET FLAME 
(2013).  ASME J. Engr. Gas Turbines and Power. Vol 135(12), pp. 121504-1 to 
121504-10 (Z. Duan, B. Shaffer, and V. McDonell). 
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Test Plan Analysis

𝑔𝑔𝑐𝑐_𝑡𝑡𝑡𝑡𝑡𝑡
= (155 + 546.4𝛼𝛼𝑡𝑡𝑡𝑡𝑡𝑡 + 5363.19𝑑𝑑𝑞𝑞_𝑡𝑡𝑡𝑡𝑡𝑡 − 0.71𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡 − 1.1𝑆𝑆𝐿𝐿_𝑡𝑡𝑡𝑡𝑡𝑡 + 1.1𝛼𝛼𝑡𝑡𝑡𝑡𝑡𝑡𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡 − 763.3𝑑𝑑𝑞𝑞_𝑡𝑡𝑡𝑡𝑡𝑡𝑆𝑆𝐿𝐿_𝑡𝑡𝑡𝑡𝑡𝑡 − 0.0023𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑆𝑆𝐿𝐿_𝑡𝑡𝑡𝑡𝑡𝑡)2

STUDY OF FUEL COMPOSITION, BURNER MATERIAL, AND TIP 
TEMPERATURE EFFECTS ON FLASHBACK OF ENCLOSED JET FLAME 
(2013).  ASME J. Engr. Gas Turbines and Power. Vol 135(12), pp. 121504-1 to 
121504-10 (Z. Duan, B. Shaffer, and V. McDonell). 

• Primitive Variable Correlation
– Able to collapse materials effect
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Test Plan Analysis
• Primitive variable approach shows reasonable 

performance but lacks elegance

• To address this
– Determine non-dimensional groups involved in flashback 

propensity to capture all effects of various parameters

• Buckingham Pi theorem 

– Find a comprehensive model to predict flashback propensity 
under various conditions

– Verify the developed model for previous relevant data in the 
literature



UTSR Workshop, Atlanta, GA, November 4, 2015 58/46

Test Plan Analysis
Symbol Definition

Flow characteristics
�𝑈𝑈 bulk velocity of the mixture

u’ turbulent intensity

Thermodynamics properties of flow

𝜌𝜌𝑢𝑢
density based on unburnt

conditions

𝜇𝜇𝑢𝑢
kinetic viscosity based on 

unburnt conditions

𝑇𝑇𝑢𝑢 Unburnt temperature

𝑃𝑃𝑢𝑢 Unburnt pressure

𝛼𝛼𝑢𝑢
thermal diffusivity based on 

unburnt conditions

𝐶𝐶𝑃𝑃𝑢𝑢
thermal capacity based on 

unburnt conditions

𝑘𝑘𝑢𝑢
thermal conductivity based 

on unburnt conditions

𝐷𝐷𝑢𝑢
Mass diffusivity of fuel

composition into the mixture

Symbol Definition
Premixed flame characteristics

𝑇𝑇𝑓𝑓
adiabatic flame temperature 
based on unburnt conditions

𝑆𝑆𝐿𝐿𝑢𝑢
laminar flame speed based 

on unburnt conditions

𝐿𝐿𝐿𝐿𝐿𝐿 lower heating value based 
on unburnt conditions

𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡
Measured burner tip 

temperature

𝑔𝑔𝑐𝑐
critical velocity gradient 

when flashback happens

ℎ′ convective heat transfer 
coefficient

Ambient conditions
𝑇𝑇0 ambient temperature

𝑃𝑃0 ambient pressure

Burner properties

𝑘𝑘′ thermal conductivity of the 
burner material

𝑑𝑑 diameter of the burner

𝜃𝜃′ thickness of the burner wall
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Test Plan Analysis
• Non-dimensional groups

p

L
c

Sg
δ

≈

L
qp S

b αδδ 2=≈
α

2
L

c
Sg ≈ 𝐷𝐷𝐷𝐷 =

𝑆𝑆𝐿𝐿2

𝛼𝛼 � 𝑔𝑔𝑐𝑐

ν
DURe2 ==Π

𝐿𝐿𝐿𝐿𝑢𝑢 =
𝛼𝛼𝑢𝑢
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Flashback characteristic 

Momentum equation

Effect of mass diffusivity 
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=Π7

Burner properties

Pressure effect
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Test Plan Analysis
• Thermal conductivity of burner is significant in 

determining flashback propensity 
– Rate of flame regression into the premixing section differs for 

different burner material 

• A comprehensive parameter survey based on 
Buckingham Pi theorem results in a physical correlation 
for flashback propensity prediction 

𝐷𝐷𝐷𝐷 = 𝐶𝐶0 ∙ 𝐿𝐿𝐿𝐿−6.12 ∙ �
𝑇𝑇𝑢𝑢
𝑇𝑇0
�
−1.71

∙ �
𝑇𝑇𝐶𝐶𝑡𝑡𝑡𝑡
𝑇𝑇𝑢𝑢

�
−3.69

�
𝛼𝛼

𝑑𝑑 ∙ 𝑆𝑆𝐿𝐿
�
−1.89

∙ 𝑓𝑓2(
𝜃𝜃′
𝑑𝑑

) ∙ 𝑓𝑓3(
𝑃𝑃𝑢𝑢
𝑃𝑃0

) 
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Test Plan Analysis
• Correlation Performance

– Dataset from Duan, et al. 2013

Z. Duan, B. Shaffer, V. McDonell, G. Baumgartner, 
and T. Sattelmayer, “Influence of Burner Material, 
Tip Temperature, and Geometrical Flame 
Configuration on Flashback Propensity of H 2 -Air 
Jet Flames,” J. Eng. Gas Turbines Power, vol. 
136, no. 2, p. 021502, Oct. 2013.

Not 
varied

�𝐷𝐷𝐷𝐷 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶.� 𝐿𝐿𝐿𝐿−6.12 �
𝑇𝑇𝑢𝑢
𝑇𝑇0

−1.71

�
𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡
𝑇𝑇𝑢𝑢

−3.69

𝑃𝑃𝐿𝐿𝑓𝑓−1.89 � 𝑓𝑓1(
𝜃𝜃′
𝑑𝑑

) � 𝑓𝑓2(
𝑃𝑃𝑢𝑢
𝑃𝑃0
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Test Plan Analysis
• Flashback propensity of Daniele, et al (2010) 
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Daniele, S., Jansohn, P., & Boulouchos, K. (2010, October). Flashback Propensity of Syngas Flames at High Pressure: Diagnostic and
Control. In ASME Turbo Expo 2010: Power for Land, Sea, and Air (pp. 1169-1175). American Society of Mechanical Engineers.

𝐷𝐷𝐷𝐷 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶.� 𝐿𝐿𝐿𝐿−6.12 �
𝑇𝑇𝐴𝐴𝐹𝐹𝑇𝑇
𝑇𝑇𝑢𝑢

−2.75

� 𝑃𝑃𝐿𝐿𝑓𝑓−1.89 �
𝑃𝑃𝑢𝑢
𝑃𝑃0

−2.10
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Guidance from Test Plan Analysis
• Based on Analysis:

– Further investigation of effects of thermo-physical features of 
burner material on flashback propensity

• More systematic study
– Extend the investigation on jet flame flashback to more gas 

turbine related conditions
• More systematic study

– Framework to evaluate model performance as data are gathered 
is in place

• Eventually apply methodologies to develop/understand 
strategies to prevent flashback event and mitigate its 
damage
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Experiments



UTSR Workshop, Atlanta, GA, November 4, 2015 65/46

Measurement Plan
• Fuel Composition Variation   

– Effect of Pressure

– Effect of Preheat Temperature 

• Effect of Burner Head
– Burner Material
– Burner Thickness
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Experiment Set-up
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Experiment Set-up
• Air and fuel mixing through a Venturi mixer
• Flow straightening via honeycomb materials 
• Interchangeable burner head 
• Consistent burner rim temperature measurement 
• Hydrogen pilot ignited with YAG laser to initiate 

reaction

• Overall setup is similar to that used in Beerer et al. 
(2014)

FLASHBACK AND TURBULENT FLAME SPEED MEASUREMENTS IN 
HYDROGEN/METHANE REACTIONS STABILIZED BY A LOW-SWIRL 
INJECTOR AT ELEVATED PRESSURES AND TEMPERATURES (2014).  
ASME J. Engr. Gas Turbines and Power, Vol 136, No. 3, pg 031502-1 --
031502-9  (D.J. Beerer, V.G. McDonell, P.Therkelsen, and R.K. Cheng)
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Experiment Set-up

Air inlet Air inlet

Observation window

Exhaust section

Venturi fuel/air mixing

Perforated plate

Quartz liner

Graphite gaskets Springs

Interchangeable burner head

Fuel injection

Top test 
section face

Premixed Jet Flames

Pilot flame

Thermocouples
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Experiment Set-up

YAG laser Burner
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Normalized Axial Velocity (U/Um)
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Numerical Method (RANS)

Experiment Set-up
• Velocity profile using LDV

Venturi

5mm
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Experiment Set-up
• Injector (80% completed)

• Fuel system (80% completed)

• Air system (80% completed)

• Preheating (100% completed)

• Water quenching system (80% completed)

• Air Mass Flow rate Control (70% completed)

• Fuel Mass Flow rate Control (70% completed)

• Hardware Setup (80% completed)

• Software Setup (50% completed)

• YAG laser (50% completed)

Air and fuel system 

Water quench system
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Test Parameters
• Pressure

 1 atm to 10 atm

• Preheated temperature
 300 K to 800 K

• Fuel compositions

• Burner materials

• Burner thickness

H2 100 75 50

CH4 0 25 50

Material
Heat 

Capacity

Heat 

Conductivity
Density

[-] [J/(g*C)] [W/(m*k)] [g/cm3]

SS-304 0.5 21.5 8

Copper 0.385 385 7.94

Quartz 0.7 1.4-2.0 2.2

Thickness [in] Inner diameter [in]

0.07 1.2

0.12 1.1

0.17 1
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Fuel/Air Mixing

• Venturi gas mixer

contour of molar concentration for pure hydrogen fuel, numerical 
modeling

Computational Fluid Dynamics (CFD)
• Mixing profile 
Reaction Kinetic Simulation
• Adiabatic Flame Temperature
• Laminar Flame speed
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Next Steps

Physical Modeling and Interpretation (60% completed) 
Verifying the developed model for previous data in the literature

Experiment Set-up (60% completed)
Flashback diagnostic system 
• Thermocouple (TC) 
• Pressure Transducer  (PT) 
• High Speed Imaging 

Flashback Data Acquisition (ongoing)

Computational Modeling (30% completed)
CFD modeling 
• Combustion modeling of the premixed jet flame
• Flashback

Data Analysis and Correlation Development (0% completed)
• Single factor correlation
• General factor correlation
• Non-dimensional groups
• Comparison between current study and previous research

Conclusion and Suggestion (0% completed)
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