Development of Criteria for Flashback Propensity in Jet Flames for High Hydrogen Content and Natural Gas Type Fuels

Alireza Kalantari, Elliot Sullivan-Lewis Vincent McDonell

UCI COMBUSTION LABORATORY

UNIVERSITY of CALIFORNIA• IRVINE

UTSR Workshop Georgia Tech, Atlanta, GA November 4, 2015

Conducted under Department of Energy University Turbine Systems Research Contract Number DE-FE0011948; Steven Richardson PM

Outline

- Motivation
- Background
- Project Goals
- Experiment
- Test Procedures
- Results
- Summary

2/46

- Integrated Gasification Combined Cycle (IGCC)
- Steam reforming of natural gas or liquid hydrocarbons
- Waste Treatment Digester Gas
- Biomass
- "Power to Gas"

Source	H ₂	CO	CH ₄	CO ₂	N ₂	C ₂	C ₃
High H ₂	90-100	0-10					
Process and refinery gas	25-55	0-10	30-65	0-5		0-25	0-25
Gasified coal/petcoke (O ₂ Blown)	35-40	45-50	0-1	10-15	0-2		
Gasified biomass	15-25	15-35	0-5	5-15	30-50		
Digester gas	0-1		50-75	25-50	0-10		
Power to Gas	0-20?		75-80			0-5	0-1

High hydrogen content fuels

UTSR Workshop, Atlanta, GA, November 4, 2015

UCI COMBUSTION LABORATORY

- Impact of Alternative Fuels on gas turbine combustion
 - Emissions
 - Operability issues
 - Lean Blow Off (Static stability)
 - Flashback

High hydrogen content fuels

5/46

• Combustion Dynamic (Dynamic stability)

Premixer/Injector: 90/10 H2/NG **Before Flashback After Flashback**

UCI COMBUSTION LABORATORY

Flashback

- Flame propagation from the combustion zone into premixing section of combustors^{/1}
 - > Flashback in the core flow
 - Combustion induced vortex breakdown (CIVB)
 - Flashback due to combustion instabilities
 - Flashback in the wall boundary layer
 Propagation of flame upstream of the flow inside the boundary layer

8/46

UCI COMBUSTION LABORATORY

/1 T. Lieuwen, V. McDonell, D. Santavicca, and T. Sattelmayer, Combust. Sci. and Tech. 180 (6) (2008)1169–1192.

Structure of Burner Flames

Lewis, B., & Von Elbe, G.	Stability and structure of burner flames	1943
Von Elbe, G., & Mentser, M.	Further Studies of the Structure and Stability of Burner Flames	1945
Putnam, A. A., & Jensen, R. A.	Application of dimensionless numbers to flash-back and other combustion phenomena	1949
Thomas, N.	Structure and stability of burner flames	1949
Wohl, K.	Quenching, flash-back, blow-off-theory and experiment	1953

Effects of Various Factors

Grumer, J.	Predicting burner performance with interchanged fuel gases	1949
Grumer, J., & Harris, M. E.	Predicting interchangeability of fuel gases interchangeability of oil gases or propane-air fuels with natural gases	1952
Grumer, J., & Harris, M. E.	Flame-stability limits of methane, hydrogen, and carbon monoxide mixtures	1952
Grumer, J., & Harris, M. E.	Temperature dependence of stability limits of burner flames	1954
Dugger, G. L.	Flame stability of preheated propane-air mixtures	1954
Grumer, J., & Harris, M. E.	Flame-stability limits of ethylene, propane, methane, hydrogen, and nitrogen mixtures	1955
Bollinger, L. E., & Edse, R.	Effect of burner-tip temperature on flashback of turbulent hydrogen-oxygen flames	1956
Fine, B.	Stability limits and burning velocities for some laminar and turbulent propane and hydrogen flames at reduced pressure	1957
Kurz, P. F.	Stability limits of flames of ternary hydrocarbon mixtures	1957
Kurz, P. F.	Some factors influencing stability limits of Bunsen flames	1957
Berlad, A. L., & Potter Jr, A. E.	Relation of boundary velocity gradient for flash-back to burning velocity and quenching distance	1957
Van Krevelen, D. W., & Chermin, H. A. G.	Generalized flame stability diagram for the prediction of interchangeability of gases	1958
Fine, B.	Flashback of laminar and turbulent burner flames at reduced pressure	1958
Fine, B.	Effect of Initial Temperature on Flash Back of Laminar and Turbulent Burner Flames.	1959
Yamazaki, K., & Tsuji, H.	An experimental investigation on the stability of turbulent burner flames	1961
Caffo, E., & Padovani, C.	Flashback in premixed air flames	1963

UCI COMBUSTION LABORATORY

Effects of Various Factors

Fuel compositions (natural gas, propane, ethane, hydrocarbons mixtures)

UCI COMBUSTION LABORATORY

11/46

Burner Thickness Effect

Effects of Various Factors

Khitrin, L. N.	Khitrin, L. N. Peculiarities of laminar-and turbulent-flame flashbacks	
Cescotti, R.	Burners and flame technology	1968
Plee, S. L., & Mellor, A. M.	Review of flashback reported in prevaporizing-premixing combustors	1978
Ball, D. A.,& Putnam, A. A.	Relation to burning velocity, quenching distance, and flash-back velocity gradient for low-and intermediate-Btu gases	1978
Putnam, A. A., & Ball, D. A.	Effect of fuel composition on relation of burning velocity to product of quenching distance and flashback velocity gradient	1980
Lee, S. T., & T'ien, J. S.	A numerical-analysis of flame flashback in a premixed laminar system	1982
Fox, J. S., & Bhargava, A.	Flame speed and flashback gradient for simulated biomass gasification products	1984
Karim, G. A., & Kibrya, M. G.	Flashback limits and flame propagation through a premixed stream of fuel and air near the lean flammability limit	1984
Karim, G. A., Wierzba, I., & Hanna, M.	The blowout limit of a jet diffusion flame in a coflowing stream of lean gaseous fuel-air mixtures	1984

Khitrin
$$\begin{cases} g = 0.023 \operatorname{Re}^{0.8} \left(\frac{\overline{U}}{D} \right) \\ g_c = \frac{S_L}{\delta_b} \\ \text{Lee, S. T. and J. S. Tien (1982)} \end{cases}$$

$$Pe_f = \frac{\delta_b}{D} \operatorname{Re}^{1.8} \operatorname{Pr} \xrightarrow{\delta_b = K \frac{\alpha}{S_L}} \text{Methane} \\ \operatorname{Re} = const.Pe_f^{1.10} \\ \text{Tip Temperature/Materials?} \end{cases}$$

$$Pe_J = \frac{1}{8K} (Pe_F)^2 \xrightarrow{Pe_F^2} \frac{(\frac{D^*S_L}{\alpha})^2}{\frac{D^*V}{\alpha}} = \frac{S_L^2 D}{\alpha V} = \frac{D}{V} \frac{S_L}{(\frac{\alpha}{S_L})} = \frac{\tau_{flow}}{\tau_{reaction}} = Da$$

$$UTSR Workshop, Atlanta, GA, November 4, 2015 \qquad 14/46$$

Different Flashback Mechanisms

Kroner, M., and Fritz, J.,	Flashback limits for combustion induced vortex breakdown in a swirl burner	2002
Kroner, M., and Fritz, J.,	Flashback limits for combustion induced vortex breakdown in a swirl burner	2003
Davu, D., Franco, R.	Investigation on flashback propensity of syngas premixed flames	2005
Xu, G., Tian, Y.,	Flashback limit and mechanism of methane and syngas fuel	2006
Burmberger, S., Hirsch, C.,	Designing a radial swirler vortex breakdown burner	2006
Noble, D. R., Zhang, Q.,	Syngas Mixture Composition Effects Upon Flashback and Blowout	2006
Noble, D. R., Q. Zhang,	Syngas fuel composition sensitivities of combustor flashback and blowout.	2006
Song, Q., Fang, A.	Dynamic and flashback characteristics of the syngas premixed swirling combustors	2008
Littlejohn, D., Cheng, R. K.	A comparison between the combustion of natural gas and partially reformed natural gas in an atmospheric lean premixed turbine-type combustor	2008
Littlejohn, D., Cheng, R. K.	Laboratory investigations of a low-swirl injector with H2 and CH4 at gas turbine conditions	2009
Shelil, N., Bagdanavicius, A.	Premixed swirl combustion and flashback analysis with hydrogen/methane mixtures	2010
Syred, N., Abdulsada, M.	The effect of hydrogen containing fuel blends upon flashback in swirl burners	2011
Jejurkar, S. Y., & Mishra, D. P.	Flame stability studies in a hydrogen-air premixed flame annular microcombustor	2011

- Swirling Flows: Combustion induced vortex breakdown (CIVB)
- Flashback in the core flow
- Syngas

UCI COMBUSTION LABORATORY

Synthesis Gas

Wang, Q., McDonell, V.	Correlating flashback tendencies for premixed injection of hydrogen and methane mixtures at elevated temperature and pressure	2009
Daniele, S., Jansohn, P.	Flashback propensity of syngas flames at high pressure: diagnostic and control	2010
Eichler, C., & Sattelmayer, T.	Experiments on flame flashback in a quasi-2D turbulent wall boundary layer for premixed methane-hydrogen-air mixtures	2011
Eichler, C., & Sattelmayer, T.	Experimental investigation of turbulent boundary layer flashback limits for premixed hydrogen- air flames confined in ducts	2011
Dam, B., Love, N.,	Flashback propensity of syngas fuels.	2011
Syred, N., Abdulsada, M.	The effect of hydrogen containing fuel blends upon flashback in swirl burners	2011
Kedia, K. S., & Ghoniem, A. F.	Mechanisms of stabilization and blowoff of a premixed flame downstream of a heat-conducting perforated plate	2012
Shaffer, B., Duan, Z.,	Study of Fuel Composition effects on flashback using a confined jet flame burner	2013
Lin, Y. C., Daniele, S.,	Turbulent flame speed as an indicator for flashback propensity of hydrogen-rich fuel gases	2013
Duan, Z., Shaffer, B.,	Study of fuel composition, burner material, and tip temperature effects on flashback of enclosed jet flame	2013
Duan, Z., Shaffer, B.,	Influence of burner material, tip temperature, and geometrical flame configuration on flashback propensity of H2-air Jet flames	2014

- High Hydrogen fuels/Syngas
- Advanced visualization/diagnostics
- Computational Fluid Dynamics

Systematic Studies

- Atmospheric studies^{1,2} found burner material, tip temperature/inlet temperature and flame confinement impact flashback propensity, while flame enclosure diameter and tube diameter play a negligible role
- Empirical correlations improved if burner tip temperature is used rather than the inlet temperature.

Gas Turbine Premixer Conditions

- Daniele et al. (2010,2013) investigated flashback propensity of syngas flame at gas turbine conditions
 - Systematic studies were not carried out
 - Limited data set

Daniele, S., Jansohn, P., & Boulouchos, K. (2010, October). Flashback Propensity of Syngas Flames at High Pressure: Diagnostic and Control. In *ASME Turbo Expo 2010: Power for Land, Sea, and Air* (pp. 1169-1175). American Society of Mechanical Engineers.

UCI COMBUSTION LABORATORY

Goals and Objectives

Goals

- Develop and validate a comprehensive model for prediction of flashback under gas turbine premixer conditions
 - The model will incorporate effect of ambient pressure as well as thermal coupling between the flame and the burner rim.
- Provide detailed insight towards understanding flashback propensity in jet flames at gas turbine related conditions

20/46

Objectives & Timeline

Milestone Title	Planned Completion Date	Actual Completion Date	Verification Method	Comments
Project Management	8/2016			
Test Plan Fuels/Modules Draft Final	12/2013 1/2014	3/2014	Consensus from OEMs and DOE on plan	Complete Complete
Fabrication of Modules	2/2014	5/2014-9/2015	Photos of completed installation and test hardware	Complete
Diagnostics/Rig Setup and Commissioned	5/2014	10/2014	Comparison of commissioning data with literature data	Complete
Experimental Studies Phase I Phase II	4/2015 12/2015	8/2015 8/2015	Comparison of commissioning data with literature data	90% Complete
Analysis and Model Development Empirical Model I	7/2015	8/2015	Predicted vs. Actual Results	EM: 90% Complete
Empirical Model II Physics Base Model	1/2016 4/2016	current	Goodness of Fit	LW. 3070 Complete

UTSR Workshop, Atlanta, GA, November 4, 2015

UCI COMBUSTION LABORATORY

Ш

Experiment

Experimental Setup

- Pressure: 15 atm
- Preheat temperature: 1100 K
- Air flow rate: 1.5 kg/sec continuous
- Fuel: High-pressure supply
 - Liquid fuels
 - Gaseous fuel blends
 - > Natural Gas: 0.1 kg/sec, 35 atm
- Optical access
- Water quench system

Experimental Setup

Premixed Jet Flame

Experimental Setup

Nd:YAG laser

Burner

25/46

UTSR Workshop, Atlanta, GA, November 4, 2015

26/46

Test Parameters

• Pressure

> 3 atm to 9 atm

• Preheated temperature

> 300 K to 700 K

• Fuel compositions

	Volume percent		
H ₂	100	50	
CH ₄	0	50	

• Burner materials

Material	Heat Capacity	Heat Conductivity	Density
[-]	[J/(g*C)]	[W/(m*k)]	[g/cm ³]
SS-304	0.500	21.5	8.0
Copper	0.385	385.0	7.9
Ceramic	0.456	0.9	4.0

UTSR Workshop, Atlanta, GA, November 4, 2015

27/46

UCI COMBUSTION LABORATORY

Testing

Flashback Monitoring

• Flashback strategy

Constant air mass flow rate

UCI COMBUSTION LABORATORY

29/46

Results & Analysis

Results

Results

Analysis

Symbol	Definition	Symbol	Definition	
Flow ch	Flow characteristics		ne characteristics	
\overline{U}	bulk velocity of the mixture	T	adiabatic flame temperature	
í	turbulent intensity	1 _f	based on unburnt conditions	
		S-	laminar flame speed based	
Inermodynami	cs properties of flow	S_{L_u}	on unburnt conditions	
0	density based on unburnt	I LIV	lower heating value based	
Pu	conditions		on unburnt conditions	
	kinetic viscosity based on	T	Measured burner tip	
μ_u	unburnt conditions	T _{tip}	temperature	
T _u	Unburnt temperature		critical velocity gradient	
		g_c	when flashback happens	
P_{u}		L'	convective heat transfer	
α_{ii}	thermal diffusivity based on	п	coefficient	
u		Ambient conditions		
$C_{P_{u}}$	inermal capacity based on	T_{0}	ambient temperature	
- u	thermal conductivity based		ambient proceure	
k_{μ}		P ₀	ambient pressure	
ŭ	on unburnt conditions	Burner	properties	
Dat	Mass diffusivity of fuel	k'	thermal conductivity of the	
<u> </u>	composition into the mixture		burner material	
		d	diameter of the burner	

 θ'

thickness of the burner wall

Analysis

UCI COMBUSTION LABORATORY

Model Performance

Model Performance

Model Performance

Interpretation

SS Burner Head

- Effect of Inlet Temp, Bulk Velocity, and Pressure on **Equivalence Ratio at Flashback**
 - Measurements vs Model

Interpretation

SS Burner Head

- Impact of Pressure, Inlet Temperature, and Equivalence Ratio on Tip Temperature at Flashback
 - Model vs Measurements

Interpretation

• SS Burner Head

 Effect of Pressure and Equivalence Ratio on Bulk Velocity at Flashback (Prediction)

UCI COMBUSTION LABORATORY

40/46

- Comparison to Other Data Sets in Literature
 - Danielle, et al., 2010
 - Syngas/Air jet flames studied in context of global consumption based turbulent flame speed measurements

UCI COMBUSTION LABORATORY

41/46

Daniele, S., Jansohn, P., & Boulouchos, K. (2010). Flashback Propensity of Syngas Flames at High Pressure: Diagnostic and Control. Paper GT2010-23456 TurboExpo 2010, Vancouver, Canada, June

UTSR Workshop, Atlanta, GA, November 4, 2015

LABORATORY

Summary

- Boundary layer flashback experiments have been carried out at elevated pressures and temperatures for various bulk velocities, burner materials, and equivalence ratios
 - Buckingham Pi theorem applied to develop correlation

$$Da = Const. Le^{1.68}. Pe_f^{1.91}. \left(\frac{T_u}{T_0}\right)^{2.57}. \left(\frac{T_{tip}}{T_o}\right)^{-0.49}. \left(\frac{P_u}{P_0}\right)^{-2.1}$$

 The resulting correlation was applied to current data as well as literature data and found to provide reasonable ability to predict flashback tendencies for the parameters studied

• Velocity profile using LDV

Fully developed turbulent flow

Fuel/Air Mixing

Mixing performance

Computational modeling

contour of molar concentration for pure hydrogen fuel

Homogeneous mixture at premixing tube outlet

UCI COMBUSTION LABORATORY

Results

Alternative Formulation

- Lin and Danielle (2013) $g_c = S_T / (Le \times \delta_{L0})$
 - Proposed correlation based on turbulent flame speed

$$\frac{S_T}{S_L} \approx \left(\frac{P}{P_0}\right)^m \left(\frac{u'}{S_L}\right)^n$$

Facilitates incorporation of turbulence levels

$$g_c = f\left(Le, S_L, u', \frac{P}{P_0}, \alpha\right)$$

Results

Pressure

• 3 atm to 7 atm

Preheated temperature

• 300 K to 500 K

Fuel

- Hydrogen
- Daniele et al. 2010
- Methane-Hydrogen

Burner materials

- Stainless steel
- Copper

$$Da = Const \cdot Pe_{F}^{1.93} \cdot Le^{1.9} \cdot \left(\frac{T_{u}}{T_{0}}\right)^{2.1} \cdot \left(\frac{T_{tip}}{T_{u}}\right)^{-0.32} \cdot \left(\frac{P_{u}}{P_{0}}\right)^{-1.56}$$

UCI COMBUSTION LABORATORY

Combustion regimes

52/46

UCI COMBUSTION LABORATORY

$$Da = Const \cdot Pe_{F}^{2.2} \cdot Le^{-9.11} \cdot \left(\frac{T_{u}}{T_{0}}\right)^{1.68} \cdot \left(\frac{T_{tip}}{T_{u}}\right)^{-0.37} \cdot \left(\frac{P_{u}}{P_{0}}\right)^{-1.64}$$

UTSR Workshop, Atlanta, GA, November 4, 2015

Test Plan Approach

 To help guide the Test Plan, additional analysis of flashback of jet flames was carried out to generate a clearer set of required information to accomplish the project goals

- Atmospheric studies identified burner material, tip temperature/inlet temperature and flame confinement have a strong impact on flashback propensity, while flame enclosure diameter and tube diameter play a negligible role
- Better correlations can be obtained if the burner tip temperature is used as the representative temperature rather than the inlet temperature.
 - Ttip-based SL able to determine flashback propensity in terms of critical velocity gradient (Duan et al. 2013)

$$g_{c_tip} = \frac{(155 + 546.4\alpha_{tip} + 5363.19d_{q_tip} - 0.71T_{tip} - 1.1S_{L_tip} + 1.1\alpha_{tip}T_{tip}^{2}}{-763.3d_{q_tip}S_{L_tip} - 0.0023T_{tip}S_{L_tip}})$$

STUDY OF FUEL COMPOSITION, BURNER MATERIAL, AND TIP TEMPERATURE EFFECTS ON FLASHBACK OF ENCLOSED JET FLAME (2013). *ASME J. Engr. Gas Turbines and Power*. Vol 135(12), pp. 121504-1 to 121504-10 (Z. Duan, B. Shaffer, and V. McDonell).

UCI COMBUSTION LABORATORY

Primitive Variable Correlation

Able to collapse materials effect

 g_{c_tip}

 $= (155 + 546.4\alpha_{tip} + 5363.19d_{q_tip} - 0.71T_{tip} - 1.1S_{L_tip} + 1.1\alpha_{tip}T_{tip} - 763.3d_{q_tip}S_{L_tip} - 0.0023T_{tip}S_{L_tip})^2$

STUDY OF FUEL COMPOSITION, BURNER MATERIAL, AND TIP TEMPERATURE EFFECTS ON FLASHBACK OF ENCLOSED JET FLAME (2013). ASME J. Engr. Gas Turbines and Power. Vol 135(12), pp. 121504-1 to 121504-10 (Z. Duan, B. Shaffer, and V. McDonell).

UCI COMBUSTION LABORATORY

• Primitive variable approach shows reasonable performance but lacks elegance

• To address this

- Determine *non-dimensional groups* involved in flashback propensity to capture all effects of various parameters
 - Buckingham Pi theorem
- Find a comprehensive model to predict flashback propensity under various conditions
- Verify the developed model for previous relevant data in the literature

UCI COMBUSTIO LABORATORY

Symbol	Definition	Symbol	Definition
Flow characteristics		Premixed flame characteristics	
\overline{U}	bulk velocity of the mixture	T _f	adiabatic flame temperature
,			based on unburnt conditions
U U		ſ	laminar flame speed based
Thermodynamic	s properties of flow	S_{L_u}	on unburnt conditions
$ ho_u$	density based on unburnt	1 1117	lower heating value based
	conditions	LHV	on unburnt conditions
μ_u	kinetic viscosity based on		Measured burner tip
	unburnt conditions	T_{tip}	temperature
T_{μ}	Unburnt temperature	g _c	critical velocity gradient
			when flashback happens
P_u	P _u Unburnt pressure	convective heat transfer	
α _u	thermal diffusivity based on	n	coefficient
	unburnt conditions	Ambient conditions	
C_{P_u}	thermal capacity based on	T ₀	ambient temperature
	unburnt conditions		
k _u	thermal conductivity based	P ₀	ambient pressure
	on unburnt conditions	Burner properties	
D_u	Mass diffusivity of fuel	k'	thermal conductivity of the
	composition into the mixture		burner material
		d	diameter of the burner
		θ'	thickness of the burner wall

Non-dimensional groups

- Thermal conductivity of burner is significant in determining flashback propensity
 - Rate of flame regression into the premixing section differs for different burner material
- A comprehensive parameter survey based on Buckingham Pi theorem results in a physical correlation for flashback propensity prediction

$$Da = C_0 \cdot Le^{-6.12} \cdot \left(\frac{T_u}{T_0}\right)^{-1.71} \cdot \left(\frac{T_{tip}}{T_u}\right)^{-3.69} \left(\frac{\alpha}{d \cdot S_L}\right)^{-1.89} \cdot f_2(\frac{\theta}{d}) \cdot f_3(\frac{P_u}{P_0})$$

UTSR Workshop, Atlanta, GA, November 4, 2015

UCI COMBUSTION LABORATORY

Correlation Performance

- Dataset from Duan, et al. 2013

Z. Duan, B. Shaffer, V. McDonell, G. Baumgartner, and T. Sattelmayer, "Influence of Burner Material, Tip Temperature, and Geometrical Flame Configuration on Flashback Propensity of H 2 -Air Jet Flames," *J. Eng. Gas Turbines Power*, vol. 136, no. 2, p. 021502, Oct. 2013.

Flashback propensity of Daniele, et al (2010)

Guidance from Test Plan Analysis

• Based on Analysis:

- Further investigation of effects of thermo-physical features of burner material on flashback propensity
 - More systematic study
- Extend the investigation on jet flame flashback to more gas turbine related conditions
 - More systematic study
- Framework to evaluate model performance as data are gathered is in place
- Eventually apply methodologies to develop/understand strategies to prevent flashback event and mitigate its damage

Experiments

UTSR Workshop, Atlanta, GA, November 4, 2015

Measurement Plan

- Fuel Composition Variation
 - Effect of Pressure
 - Effect of Preheat Temperature
- Effect of Burner Head
 - Burner Material
 - Burner Thickness

66/46

UCI COMBUSTION LABORATORY

- Air and fuel mixing through a Venturi mixer
- Flow straightening via honeycomb materials
- Interchangeable burner head
- Consistent burner rim temperature measurement
- Hydrogen pilot ignited with YAG laser to initiate reaction
- Overall setup is similar to that used in Beerer et al. (2014)

FLASHBACK AND TURBULENT FLAME SPEED MEASUREMENTS IN HYDROGEN/METHANE REACTIONS STABILIZED BY A LOW-SWIRL INJECTOR AT ELEVATED PRESSURES AND TEMPERATURES (2014). ASME J. Engr. Gas Turbines and Power, Vol 136, No. 3, pg 031502-1 --031502-9 (D.J. Beerer, V.G. McDonell, P.Therkelsen, and R.K. Cheng)

Premixed Jet Flames

YAG laser

Burner

69/46

Velocity profile using LDV

- Injector (80% completed)
- Fuel system (80% completed)
- Air system (80% completed)
- Preheating (100% completed)
- Water quenching system (80% completed)
- Air Mass Flow rate Control (70% completed)
- Fuel Mass Flow rate Control (70% completed)
- Hardware Setup (80% completed)
- Software Setup (50% completed)
- YAG laser (50% completed)

Air and fuel system

Test Parameters

• Pressure

 \succ 1 atm to 10 atm

Preheated temperature

> 300 K to 800 K

• Fuel compositions

H ₂	100	75	50
CH ₄	0	25	50

$$\Pi_1 = Da = \frac{S_L^2}{\alpha \cdot g_c}$$

 $\Pi_5 = \frac{P_u}{P_0}$

 $\Pi_6 = \frac{T_u}{T_0}$

• Burner materials

• Burner	thickness
----------	-----------

Material	Heat	Heat	Donsity
	Capacity	Conductivity	Density
[-]	[J/(g*C)]	[W/(m*k)]	[g/cm ³]
SS-304	0.5	21.5	8
Copper	0.385	385	7.94
Quartz	0.7	1.4-2.0	2.2

Thickness [in]	Inner diameter [in]
0.07	1.2
0.12	1.1
0.17	1

72/46

$$\Pi_6 = \frac{T_f}{T_0}$$

 $\Pi_7 = \frac{\theta'}{d}$

UCI COMBUSTION LABORATORY
Fuel/Air Mixing

Computational Fluid Dynamics (CFD)

- Mixing profile Reaction Kinetic Simulation
- Adiabatic Flame Temperature
- Laminar Flame speed

73/46

UTSR Workshop, Atlanta, GA, November 4, 2015

Next Steps

Physical Modeling and Interpretation (60% completed) Verifying the developed model for previous data in the literature

Experiment Set-up (60% completed)

Flashback diagnostic system

- Thermocouple (TC)
- Pressure Transducer (PT)
- High Speed Imaging

Flashback Data Acquisition (ongoing)

Computational Modeling (30% completed)

CFD modeling

- Combustion modeling of the premixed jet flame
- Flashback

Data Analysis and Correlation Development (0% completed)

- Single factor correlation
- General factor correlation
- Non-dimensional groups
- Comparison between current study and previous research

Conclusion and Suggestion (0% completed)

