Effects of Exhaust Gas Recirculation (EGR) on Turbulent Combustion Emissions in Advanced Gas Turbine Combustors with High Hydrogen Content (HHC) Fuels

Robert P. Lucht, Jay. P Gore, Yiguang Ju and Michael Mueller

Maurice J. Zucrow Laboratories School of Mechanical Engineering Purdue University West Lafayette, IN Dept. of Mechanical and Aerospace Engineering Princeton University Princeton, NJ

DOE Award No. DE-FE0011822

National Energy Technology Laboratory University Turbine Systems Research Program

2015 UTSR Workshop, Atlanta, GA, November 3-5, 2015

Outline of the Presentation

- Yiguang Ju Chemical kinetics with EGR effects, Reactor Assisted Turbulent Slot (RATS) burner studies at atmospheric pressure
- Bob Lucht and Jay Gore: High-pressure Premixed Axisymmetric Reactor Assisted Turbulent (PARAT) burner, initial measurements
- Michael Mueller Advanced numerical modeling of the RATS and PARAT burners

Effects of CO₂ and H₂O Diluents on

Laminar & turbulent flame speeds, Chemical kinetics, Emissions

- What happens to the burning rate when diluents (CO₂, H₂O, etc.) are introduced? Four effects:
 - Dilution Reduce reactant concentrations, reduce reaction rates
 - Thermal Reduce flame temperature, reducing rate *coefficients*
 - Transport thermal/mass diffusivity (Lewis number) and Radiation
 - Chemical Reactions of "diluent" with fuel, oxidizer, and intermediates (e.g. CO₂+H→CO+OH and HCO+M=H+CO, H2O+O=2OH)

Research accomplishments

- Flame speed measurements of HHC fuels with CO₂/H2O additions
- High pressure kinetic mechanism (HP-Mech) for HHC fuels with EGR
- Turbulent flame speed and structure measurements with H₂O/CO₂ dilution
- Radiation effect of CO₂/H₂O
- HO₂ diagnostics using Faraday Rotational Spectroscopy

Laminar flame speeds: Experimental Design H2, CH4, CH2O, C2H2, C2H4, and C2H6 fuels with H₂O or CO₂ dilutions

For example: C₂H₄ with H₂O dilution

- Water vapor decreases the mass burning rate, more at high pressure
- Models disagree with experiments and each other, more at high pressure
- Similar for hydrogen and syngas flames with water vapor*

J. Santner, F.L. Dryer, and Y. Ju. "The Effects of Water Dilution on Hydrogen, Syngas, and Ethylene Flames at Elevated Pressure." *Proceedings of the Combustion Institute* 34.1 (2013): 719-726.

C₂H₂ Flames with CO₂ dilution

- CO₂ dilution decreases burning rate for lean conditions – but doesn't affect rich conditions
- Typically, CO₂ slows flame by decreasing H through reverse reaction of CO+OH=CO₂+H
- Existing models do not have a good prediction. HP-Mech improves prediction.

Chemical effect of H2, C₂H₄ Flames with H₂O dilution

- Water addition decreases H and O radicals relative to OH and HO₂ H₂O+O=2OH
- High collisional efficiency of H₂O
 - Increased HO_2 from $H+O_2+M=HO_2+M$
 - Increased H from HCO+M=H+CO+M
- Chemical effect increases with pressure

Task 2a A high pressure mechanism (HP-Mech) for C₀-C₂ hydrocarbon fuel with H2O and CO2

> Many models available, but... not for EGR, pressure dependency...

- > Most widely ones.: GRI-Mech, USC Mech II, optimization based, off-design problem
- **b** Dryer models: small hydrocarbons: H₂, CO/CH₄, CH₂O, CH₃OH, CH₃CH₂OH, not focused on EGR
- > Curran models: also try to optimize the experiments such as ignition delay and flame speed
- ≻ ...

HP-Mech

- Addressing the pressure dependence of reactions
- EGR effect
- Using the elementary rates with high level quantum computation and/or experimentally determined, *no optimization*!
- Update the thermochemistry database (e.g. Burcat and Ruscic database).

Key reactions:
$$H+O2 = O+OH$$
 $HCO+M = H+CO+M$ $NO+HO_2 = NO_2+OH$ For example $H+O2+M=HO2+M$ $HCO+O2 = HO2+CO$ $NO_2+CH_3 = NO+CH_3O$

High pressure mechanism (HP-Mech) development

- > **Thermochemistry**: Active Thermochemical Tables
- > Transport: chemkin library: H, H2 and HE from Hai Wang USC Mech II
- Reaction set: up to C6 reflecting the most recent advance of rate determinations
 - H₂-O₂ model (Burke et al, Int. J. Chem. Kinet. 44(2012), 444–474, update or modification)
 - CO+OH=CO₂+H (Joshi et al, Int. J. Chem. Kinet. 38 (2006), 57-73)
 - HCO decomposition (Yang et al, 8th US National Combustion Meeting, Park City, Utah 2013)
 - HCO+O₂=HO₂+CO (Klippenstein private commucation)
 - CH+O₂ reactions (Rohrig et al, Int. J. Chem. Kinet. 29(1997), 781-789; Bergeat et al, Faraday Discuss., 119(2002), 67-77)
 - CH₂+O₂ reactions (Lee at al, *J. Phys. Chem. A*, 116 (2012), pp 9245–9254; Blitz et al, Z. Phys. Chem. 225 (2011), 957–967)
 - CH₂ relaxations (Gannon et al, J. Chem. Phys. 132(2010), 024302)
 - H+CH₃+M=CH₄+M (Troe et al, J. Chem. Phys. 136(2012), 214309; Brouard et al, J. Phys. Chem. 93(1989), 4047)
 - CH₃+HO₂ (Jasper et al Proc. Combust. Inst. 32, 279 (2009))
 - CH₃+OH and CH₃OH decomposition (Jasper et al, J. Phys. Chem. A 111, 3932 (2007))
 - $H+C_2H_2+M=C_2H_3+M$ and $H+C_2H_4+M=C_2H_5+M$ (Miller and Klippenstein, Phys. Chem. Chem. Phys., 6(2004), 1192 1202)
 - CH₂(S)+C₂H₂=C₃H₃+H (Gannon et al J. Phys. Chem. A 114(2010) 9413–9424; Polino et al, J. Phys. Chem. A. 117(2013):12677-92)
 - HCCO+O₂ (Klippenstein et al., Proc. .Combust. Inst. 29 (2002), 1209; Zou et al., Phys. Chem. Chem. Phys., 6(2004), 1697-1705)
 - C₂H₂+OH (Senosiain et al., J. Phys. Chem. A 109(2005) 6045-6055)
 - C₂H₃+O₂ (Klippenstein private communication; Matsugi et al, Int. J. Chem. Kinet. 46: 260–274, 2014)
 - HCCO+OH=HCOH+CO (Mai et al, Chem. Phys. Lett. 592(2014) 175-181)
 - C₂H₄+O (Nguyen, et al., J. Phys. Chem. A 109(2005) 7489-7499)
 -

Hydrogen flames-1

Mass burning rate of H2/O2/He phi=0.85

9th US National Combustion Meeting, Cincinnati OH, May 17- 20th, 2015

H2/CO flames

HP-Mech — USC Mech II …… Aramco Mech ——

Cincinnati OH, May 17- 20th, 2015

Ethane flame

Cincinnati OH, May 17-20th, 2015

Task 4. EGR Kinetic Effect on Turbulent CH₄ Flames

Investigation of EGR Effects on Turbulent Flame Structure in RATS Burner

Objectives

- Investigate turbulent burning velocity and flame structures
 - At EGR conditions and elevated temperature
 - Systematic measurements of H_2O and CO_2 dilution
 - Effects of H₂O¹ and CO₂² dilution were investigated separately in previous studies only with methane/air.
- Identify chemistry/thermal/transport effects on turbulent premixed flames³ in EGR conditions.

Experiment, RATS Burner

• <u>Reactor Assisted Turbulent Slot burner (RATS burner)</u>¹

- Heat large flow rates (1000 LPM) up to 700 K with CO2/H2O/N2 dilutions
- ~ 55 cm heated length, 100 × 10 mm exit cross-section ($D_H \approx 18$ mm)
- Two turbulence generators^{2,3}, homogeneous isotropic turbulence confirmed by hot-wire anemometry
- High Reynolds number (Re_{bulk} > 10,000)

¹S. H. Won, B. Windom et al, Combust. Flame 161 (2014) 475-483. ²Coppola, G., and Gomez, A., *Experimental Thermal and Fluid Science*, Vol. 33, 2009, pp. 1037-1048. ³Venkateswaran, P. *et. al., Combustion and Flame., 158, 2011, 1602-1614*

Determination of turbulent flame speed, S_T

Effects on flame speed with EGR dilution

- Both CO₂ and H₂O addition decrease turbulent burning velocity, S_T
- Strong decrease in laminar flame speed S_L

16

- Drop from 70.6 cm/s to 28.4 cm/s for 20% H₂O
- Drop from 70.6 cm/s to 36.8 cm/s for 10% CO₂
- S_T/S_L increases with dilution for both CO₂ and H₂O addition
 - More pronounced increase for CO₂, however
 - Why does normally S_T/S_L increases with dilution?
 - How do we know the effects are thermal or kinetic?

EGR Dilution effect at Constant Temperature: Corrugated Flames

- H₂O dilution has almost no discernable effect on L_p, S_T, or S_T/S_L
- Thermal effects were clearly the dominant factor for H₂O dilution
- CO₂ dilution produces (~10%) decrease in S_T, kinetic effect
- Turbulence reduces the kinetic effect of CO₂ on burning velocity
- CO2 dilution increases turbulenceturbulent flame speed coupling due to the combined chemistry and transport effect (Le). (Promoted instability)

 \uparrow 10% H₂O results in u'/S_L \uparrow 2% and 1/Le \downarrow 8% \uparrow 10% CO₂ results in u'/S_L \uparrow 18% and 1/Le \uparrow 8%

EGR Dilution at Constant Temperature: Thin Reaction Zone

- H₂O again has no significant effect on L_P, S_T, or S_L
- Turbulence increases the decrease of S_T with CO₂ addition, enhance the turbulence-chemistry coupling.
- Turbulent flame speed deviates from the conventional S_T correlation.

Conclusions

- 1. H_2O and CO_2 dilution have strong thermal, transport, and chemistry effects on the turbulent flame speed of methane. The conventional S_T/S_L vs. u'/S_L correlation may not apply.
- 2. Thermal effects are the dominant factor in affecting burning velocity for both H₂O and CO₂ dilution.
- 3. At constant adiabatic flame temperature, H_2O dilution does not produce significant impacts on the normalized burning velocity S_T/S_L due to the opposing effects of kinetics and transport.
- 4. For CO_2 dilution, in the corrugated flame regime, the competition between transport effect and chemistry effect results in an increase in S_T/S_L , thus stronger dependence of turbulent flame speed on Reynolds number.
- 5. In the thin reaction zone, CO_2 addition results in stronger chemistry effect at higher Reynolds number and an approximately constant S_T/S_L , deviating from the conventional turbulent flame speed correlation.

Future Plans

- Development of HP-Mech with NOx at high pressure.
- $CH_4/air + CO_2$, $H_2/air + H_2O/CO_2$ will be further investigated in turbulent premixed flames at higher pressure. (S_7 and flame structures)
- Studies of the transport effects on turbulent flame structure

Big problem:

Comparison of predicted peak OH concentrations of hydrogen flames by seven different kinetic models.

Radicals prediction is not constrained in existing models! Large uncertainty to predict NOx emissions!

> N2+O=NO+N N+OH=NO+H

High-Pressure PARAT Burner Studies Robert Lucht and Jay Gore Purdue University

- Design and fabrication of PARAT burner
- Initial measurements at atmospheric pressure
- Planned high-pressure measurements

Purdue Gas Turbine Combustion Facility (GTCF)

High Pressure Lab System	Maximum Flow Capacity	Max Operating Condition
Natural Gas Heated High Pressure Air	9 lbm/s 4 kg/s	700 psi / 1100 K 1500 F
Electric Heated Air or Nitrogen	1 lbm/s 0.5 kg/s	600 psi / 800 K 1000 F
Nitrogen	5 lbm/s 2 kg/s	1,500 psi
Liquid Aviation Fuel (Kerosene)	1 lbm/s 0.5 kg/s	1,500 psi
Natural Gas	1 lbm/sec 0.5 kg/s	3500 psi

Laser Diagnostics for High-Pressure Test Rig

- 10 kHz stereo PIV
- 10 kHz OH PLIF
 - Pulse burst laser is
 being delivered
 this week for PIV,
 PLIF at data rates
 up to 100 kHz

Assembly of PARAT Burner into the Windowed High-Pressure Test Rig

Cross-sectional View of PARAT Burner into the Windowed High-Pressure Test Rig

Initial Operation of the PARAT Burner at Atmospheric Pressure: Operating Conditions

	Without EGR		With EGR	
Flame No.	1	2	3	4
Re	10000	20000	10000	10000
Equivalence ratio	0.8	0.8	0.8	0.8
CO ₂ percentage by mass%	0.0	0.0	10.0	20.0
Air flow rate (I/min)	122.2	244.4	107.6	93.4
CH ₄ flow rate (I/min)	10.3	20.5	10.1	9.9
CO ₂ flow rate (I/min)	0.0	0.0	8.3	16.2
CO ₂ /CH ₄ mass flow rate ratio	0.0	0.0	2.26	4.5
H ₂ flow rate (I/min)	2.0	2.0	2.0	2.0

IR Imaging of PARAT Burner Flames

•Turbulent lean premixed methane flame

- Re = 8950
- Burner diameter (D) = 15 mm

• FLIR Infrared Camera

- w/ band pass filters
- $H_2O_2 2.58 \pm 0.03 \ \mu m$
- H_2O and CO_2 2.77 ± 0.1 μm
- CO₂ 4.38 ± 0.08 μm

Distance between camera and flame d = 0.5 m

•Sampling frequency=430 Hz

IR Imaging of PARAT Burner Flames

Infrared images of the CO_2 (4.3 micrometer band) for the four different flames at a representative exposure time of 20 µs

Flame #1

Flame #2 Flame #3

Flame #4

	Without EGR		With EGR	
Flame No.	1	2	3	4
Re	10000	20000	10000	10000
Equivalence ratio	0.8	0.8	0.8	0.8
CO ₂ percentage by mass%	0.0	0.0	10.0	20.0
Air flow rate (I/min)	122.2	244.4	107.6	93.4
CH ₄ flow rate (I/min)	10.3	20.5	10.1	9.9
CO ₂ flow rate (I/min)	0.0	0.0	8.3	16.2
CO ₂ /CH ₄ mass flow rate ratio	0.0	0.0	2.26	4.5
H ₂ flow rate (I/min)	2.0	2.0	2.0	2.0

CARS Measurements in Atmospheric Pressure PARAT Burner Flames: Temperature PDFs Along Centerline

Axial Location

108 mm

113 mm

CARS Measurements in Atmospheric Pressure PARAT Burner Flames: Temperature PDFs Along Centerline

CARS Measurements at High Pressure: PARAT Burner Now Installed in HP Test Rig

High-Pressure PARAT Burner Studies Future Work

- Initial tests for operability
- High-speed stereo PIV, OH PLIF for comparison with numerical modeling
- Nox, CO emission measurements for comparison with numerical modeling

Correlation of Turbulent Flame Speed using leading edge flame speed

- In the corrugated flame regime, where the Lewis number effect is important. CO₂ dilution leads to an increase in S_T/S_{L,LE}
- In the thin reaction zone, however, S_T/S_{L,LE} now decreases with CO₂ dilution, indicating stronger turbulence-chemistry effect.
- However, the leading edge speed does not improve the correlation of turbulent flame speed with u'.

Effects on flame speed with EGR dilution at constant temperature

- To remove thermal effects, we hold the adiabatic flame temperature T_{ad} constant
- The 10% CO₂ cases (T_{ad} = 2025 K) is used as a baseline—all other cases with extra N₂ dilution.
- Modified Damköhler scaling analysis contains elements of both transport (Le) and kinetics (S_L):

$$\frac{S_T}{S_L} \sim \left(\frac{u'}{S_L}\right)^{0.5} \left(\frac{1}{Le}\right)^{0.5}$$

• How will the chemistry effect change when we move from the corrugated flame to thin reaction zone regime?

