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Outline of the Presentation

• Yiguang Ju - Chemical kinetics with EGR effects, 
Reactor Assisted Turbulent Slot (RATS) burner studies at 
atmospheric pressure

• Bob Lucht and Jay Gore:  High-pressure Premixed 
Axisymmetric Reactor Assisted Turbulent (PARAT) 
burner, initial measurements 

• Michael Mueller – Advanced numerical modeling of the 
RATS and PARAT burners
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Effects of CO2 and H2O Diluents on
Laminar & turbulent flame speeds, Chemical kinetics, Emissions

• What happens to the burning rate when diluents (CO2, H2O, etc.) 
are introduced? Four effects:
– Dilution – Reduce reactant concentrations, reduce reaction rates
– Thermal – Reduce flame temperature, reducing rate coefficients
– Transport –thermal/mass diffusivity (Lewis number) and Radiation
– Chemical – Reactions of “diluent” with fuel, oxidizer, and 

intermediates (e.g. CO2+H→CO+OH and HCO+M=H+CO, H2O+O=2OH)

• Flame speed measurements of HHC fuels with CO2/H2O additions
• High pressure kinetic mechanism (HP-Mech)  for HHC fuels with EGR
• Turbulent flame speed and structure measurements with H2O/CO2 dilution
• Radiation effect of CO2/H2O 
• HO2 diagnostics using Faraday Rotational Spectroscopy

Research accomplishments
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• Two validated experiments
– Cylindrical, room temperature 

chamber for CO2 dilution from 1-20 
atm

– Spherical, heated chamber for H2O 
dilution from 1-10 atm

• Both experiments:
– Centrally ignited spherically 

expanding flame
– High speed schlieren imaging
– Passive custom pressure-release 

valves

Laminar flame speeds: Experimental Design
H2, CH4, CH2O, C2H2, C2H4, and C2H6 fuels with H2O or CO2 dilutions



For example: C2H4 with H2O dilution

• Water vapor decreases the mass burning 
rate, more at high pressure

• Models disagree with experiments and 
each other, more at high pressure

• Similar for hydrogen and syngas flames 
with water vapor*
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C2H2 Flames with CO2 dilution

• CO2 dilution decreases burning rate for 
lean conditions – but doesn’t affect rich 
conditions

• Typically, CO2 slows flame by 
decreasing H through reverse reaction 
of CO+OH=CO2+H

• Existing models do not have a good 
prediction. HP-Mech improves 
prediction.
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Chemical effect of H2, C2H4 Flames with H2O dilution

• Water addition decreases H and O 
radicals relative to OH and HO2

H2O+O=2OH
• High collisional efficiency of H2O

– Increased HO2 from H+O2+M=HO2+M
– Increased H from HCO+M=H+CO+M

• Chemical effect increases with 
pressure
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Task 2a A high pressure mechanism (HP-Mech) for C0-C2 hydrocarbon 
fuel with H2O and CO2

H+O2      = O +OH 
H+O2+M=HO2+M

HCO+M     =  H+CO+M
HCO+O2    = HO2+CO

NO+HO2 = NO2+OH
NO2+CH3 = NO + CH3O

Key reactions:
For example

• Addressing the pressure dependence of reactions
• EGR effect
• Using the elementary rates with high level quantum computation and/or 

experimentally determined, no optimization! 
• Update the thermochemistry database (e.g. Burcat and Ruscic database).

 Many models available, but… not for EGR, pressure dependency… 
 Most widely ones.: GRI-Mech, USC Mech II,  optimization based, off-design problem
 Dryer models: small hydrocarbons: H2, CO/CH4, CH2O, CH3OH, CH3CH2OH, not focused on EGR
 Curran models: also try to optimize the experiments such as ignition delay and flame speed
 …

HP-Mech



High pressure mechanism (HP-Mech) development
 Thermochemistry: Active Thermochemical Tables
 Transport: chemkin library: H, H2 and HE from Hai Wang USC Mech II
 Reaction set: up to C6 - reflecting the most recent advance of rate determinations

– H2-O2 model (Burke et al, Int. J. Chem. Kinet. 44(2012), 444–474, update or modification)
– CO+OH=CO2+H (Joshi et al, Int. J. Chem. Kinet.  38 (2006), 57-73)
– HCO decomposition (Yang et al, 8th US National Combustion Meeting, Park City, Utah 2013)
– HCO+O2=HO2+CO (Klippenstein private commucation)
– CH+O2 reactions (Rohrig et al, Int. J. Chem. Kinet. 29(1997), 781-789; Bergeat et al, Faraday Discuss., 119(2002), 67-77)
– CH2+O2 reactions (Lee at al, J. Phys. Chem. A, 116 (2012), pp 9245–9254; Blitz et al, Z. Phys. Chem. 225 (2011), 957–967)
– CH2 relaxations (Gannon et al, J. Chem. Phys. 132(2010), 024302)
– H+CH3+M=CH4+M (Troe et al, J. Chem. Phys. 136(2012), 214309; Brouard et al, J. Phys. Chem. 93(1989), 4047 ) 
– CH3+HO2 (Jasper et al Proc. Combust. Inst. 32, 279 (2009))
– CH3+OH and CH3OH decomposition ( Jasper et al, J. Phys. Chem. A 111, 3932 (2007))
– H+C2H2+M=C2H3+M and H+C2H4+M=C2H5+M (Miller and Klippenstein, Phys. Chem. Chem. Phys., 6(2004), 1192 –1202)
– CH2(S)+C2H2=C3H3+H  (Gannon et al J. Phys. Chem. A 114(2010) 9413−9424; Polino et al, J. Phys. Chem. A. 117(2013):12677-

92)
– HCCO+O2 (Klippenstein et al., Proc. .Combust. Inst. 29 (2002), 1209; Zou et al., Phys. Chem. Chem. Phys., 6(2004), 1697-

1705)
– C2H2+OH (Senosiain et al., J. Phys. Chem. A 109(2005) 6045-6055)
– C2H3+O2 (Klippenstein private communication; Matsugi et al, Int. J. Chem. Kinet. 46: 260–274, 2014) 
– HCCO+OH=HCOH+CO (Mai et al, Chem. Phys. Lett. 592(2014)  175-181)
– C2H4+O (Nguyen, et al., J. Phys. Chem. A 109(2005) 7489-7499)
– ….

9th US National Combustion Meeting,  
Cincinnati OH, May 17- 20th, 2015



Hydrogen flames-1

H+O2+M dominate pressure dependence
9th US National Combustion Meeting,  

Cincinnati OH, May 17- 20th, 2015

HP-Mech

GRI



H2/CO flames

9th US National Combustion Meeting,  
Cincinnati OH, May 17- 20th, 2015

HP-Mech —
USC Mech II ∙∙∙∙∙∙
Aramco Mech ∙‒∙‒
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Ethane flame

9th US National Combustion Meeting,  
Cincinnati OH, May 17- 20th, 2015



Objectives

• Investigate turbulent burning velocity and flame 
structures
– At EGR conditions and elevated temperature
– Systematic measurements of H2O and CO2 dilution

• Effects of H2O1 and CO2
2 dilution were investigated separately 

in previous studies only with methane/air.

• Identify chemistry/thermal/transport effects on 
turbulent premixed flames3 in EGR conditions.
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1 H. Kobayashi, et al., Proc. Combust. Inst. 32 (2009) 2067-2614.
2 H. Kobayashi, et al., Proc. Combust. Inst. 31 (2007) 1451-1458.
3 J. F. Driscoll, Prog. Energy Combust. Sci. 34 (2008) 91-134.

Task 4. EGR Kinetic  Effect on Turbulent CH4 Flames
Investigation of EGR Effects on Turbulent Flame Structure in RATS Burner 



Experiment, RATS Burner
• Reactor Assisted Turbulent Slot burner (RATS burner)1

– Heat large flow rates (1000 LPM) up to 700 K with CO2/H2O/N2 dilutions
– ~ 55 cm heated length, 100 × 10 mm exit cross-section (DH ≈ 18 mm)
– Two turbulence generators2,3, homogeneous isotropic turbulence 

confirmed by hot-wire anemometry
– High Reynolds number (Rebulk > 10,000)
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1 S. H. Won, B. Windom et al, Combust. Flame 161 (2014) 475-483.
2.Coppola, G., and Gomez, A., Experimental Thermal and Fluid Science, Vol. 33, 2009, pp. 1037-1048.
3Venkateswaran, P. et. al., Combustion and Flame., 158, 2011, 1602-1614



Determination of turbulent flame speed, ST

Single Image of OH PLIF
Flame perimeter 

from single image 
PDF of Flame 

Perimeters

Find inner 
edge

Find inner 
edge
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Stack perimeters 
from 500 images

LP
(4th order 

polynomial fit)

w

“PDF method” gives similar results to method seen in
H. Kobayashi, Exp. Therm. Fluid Sci. 26 (2002) 375-387

CH4/Air
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𝑼𝑼𝑼𝑼
𝑳𝑳𝑷𝑷
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Effects on flame speed with EGR dilution
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• Both CO2 and H2O addition decrease turbulent 
burning velocity, ST

• Strong decrease in laminar flame speed SL
– Drop from 70.6 cm/s to 28.4 cm/s for 20% H2O
– Drop from 70.6 cm/s to 36.8 cm/s for 10% CO2

• ST/SL increases with dilution for both CO2 and H2O 
addition 

– More pronounced increase for CO2, however

𝑺𝑺𝑻𝑻 =
𝑼𝑼𝑼𝑼
𝑳𝑳𝑷𝑷

• Why does normally ST/SL increases with dilution?
• How do we know the effects are thermal or kinetic?



• H2O dilution has almost no 
discernable effect on LP, ST, or ST/SL

• Thermal effects were clearly the 
dominant factor for H2O dilution 

• CO2 dilution produces (~10%) 
decrease in ST, kinetic effect

• Turbulence reduces the kinetic 
effect of CO2 on burning velocity

• CO2 dilution increases turbulence-
turbulent flame speed coupling 
due to the combined chemistry 
and transport effect (Le).  
(Promoted instability)

EGR Dilution effect at Constant Temperature: 
Corrugated Flames
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↑ 10% H2O results in u’/SL ↑ 2% and 1/Le ↓ 8%
↑ 10% CO2 results in u’/SL ↑ 18% and 1/Le ↑ 8%



EGR Dilution at Constant Temperature: Thin Reaction Zone
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• H2O again has no significant effect on LP, ST, or SL

• Turbulence increases the decrease of ST with CO2
addition, enhance the  turbulence-chemistry 
coupling.

• Turbulent flame speed deviates from the 
conventional ST correlation.



Conclusions
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1. H2O and CO2 dilution have strong thermal, transport, and chemistry 
effects on the turbulent flame speed of methane. The conventional 
ST/SL vs. u’/SL correlation may not apply.

2. Thermal effects are the dominant factor in affecting burning velocity for 
both H2O and CO2 dilution.

3. At constant adiabatic flame temperature, H2O dilution does not produce 
significant impacts on the normalized burning velocity ST/SL due to the 
opposing effects of kinetics and transport.

4. For CO2 dilution, in the corrugated flame regime, the competition 
between transport effect and chemistry effect results in an increase in 
ST/SL, thus stronger dependence of turbulent flame speed on Reynolds 
number.

5. In the thin reaction zone, CO2 addition results in stronger chemistry 
effect at higher Reynolds number and an approximately constant ST/SL, 
deviating from the conventional turbulent flame speed correlation.



Future Plans
• Development of HP-Mech with NOx at high pressure.
• CH4/air + CO2, H2/air + H2O/CO2 will be further investigated in turbulent 

premixed flames at higher pressure. (ST and flame structures)
• Studies of the transport effects on turbulent flame structure
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Large uncertainty to predict NOx
emissions!



High-Pressure PARAT Burner Studies
Robert Lucht and Jay Gore

Purdue University

• Design and fabrication of PARAT burner
• Initial measurements at atmospheric 

pressure
• Planned high-pressure measurements

21



Purdue Gas Turbine Combustion Facility (GTCF)

High 
Pressure Lab 

System

Maximum 
Flow 

Capacity

Max 
Operating 
Condition

Natural Gas 
Heated High 
Pressure Air

9 lbm/s
4 kg/s

700 psi / 
1100 K
1500 F

Electric Heated 
Air or Nitrogen

1 lbm/s
0.5 kg/s 

600 psi /
800 K 
1000 F

Nitrogen 5 lbm/s
2 kg/s

1,500 psi

Liquid 
Aviation Fuel 
(Kerosene)

1 lbm/s
0.5 kg/s

1,500 psi

Natural Gas 1 lbm/sec
0.5 kg/s

3500 psi
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Laser Diagnostics for High-Pressure Test Rig
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• 10 kHz stereo PIV

• 10 kHz OH PLIF

• Pulse burst laser is 
being delivered 
this week for PIV, 
PLIF at data rates 
up to 100 kHz



Assembly of PARAT Burner into the 
Windowed High-Pressure Test Rig

Fuel

Air



Fuel

Air

Turbulence
Generators

Pilot Fuel/Air Mixture

Cross-sectional View of PARAT Burner into the 
Windowed High-Pressure Test Rig



Initial Operation of the PARAT Burner at 
Atmospheric Pressure:  Operating Conditions 

Without EGR With EGR

Flame No. 1 2 3 4

Re 10000 20000 10000 10000

Equivalence ratio 0.8 0.8 0.8 0.8

CO2 percentage by mass% 0.0 0.0 10.0 20.0

Air flow rate (l/min) 122.2 244.4 107.6 93.4

CH4 flow rate (l/min) 10.3 20.5 10.1 9.9

CO2 flow rate (l/min) 0.0 0.0 8.3 16.2

CO2/CH4 mass flow rate ratio 0.0 0.0 2.26 4.5

H2 flow rate (l/min) 2.0 2.0 2.0 2.0



•Turbulent lean premixed methane flame
• Re = 8950
• Burner diameter (D) = 15 mm

• FLIR Infrared Camera 
w/ band pass filters
• H2O: 2.58 ± 0.03 μm
• H2O and CO2 2.77 ± 0.1 μm
• CO2 4.38 ± 0.08 μm

• Distance between camera and flame
d = 0.5 m

•Sampling frequency=430 Hz

IR Imaging of PARAT Burner Flames

d



IR Imaging of 
PARAT Burner 

Flames
Infrared images 
of the CO2 (4.3 
micrometer 
band) for the 
four different 
flames at a 
representative 
exposure time 
of 20 µs

Without EGR With EGR
Flame No. 1 2 3 4

Re 10000 20000 10000 10000
Equivalence ratio 0.8 0.8 0.8 0.8

CO2 percentage by mass% 0.0 0.0 10.0 20.0
Air flow rate (l/min) 122.2 244.4 107.6 93.4
CH4 flow rate (l/min) 10.3 20.5 10.1 9.9
CO2 flow rate (l/min) 0.0 0.0 8.3 16.2

CO2/CH4 mass flow rate ratio 0.0 0.0 2.26 4.5
H2 flow rate (l/min) 2.0 2.0 2.0 2.0



CARS Measurements in Atmospheric Pressure 
PARAT Burner Flames:  Temperature PDFs 

Along Centerline 

Axial Location
108 mm                                113 mm



CARS Measurements in Atmospheric Pressure 
PARAT Burner Flames:  Temperature PDFs 

Along Centerline 

Axial Location
108 mm                                113 mm



CARS Measurements at High Pressure:  
PARAT Burner Now Installed in HP Test Rig



High-Pressure PARAT Burner Studies
Future Work

• Initial tests for operability
• High-speed stereo PIV, OH PLIF for 

comparison with numerical modeling
• Nox, CO emission measurements for 

comparison with numerical modeling 
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Correlation of Turbulent Flame Speed 
using leading edge flame speed

33

• In the corrugated flame regime, 
where the Lewis number effect is 
important. CO2 dilution leads to an 
increase in ST/SL,LE

• In the thin reaction zone, however, 
ST/SL,LE now decreases with CO2
dilution, indicating stronger 
turbulence-chemistry effect.

• However, the leading edge speed 
does not improve the correlation of 
turbulent flame speed with u’.



• To remove thermal effects, we hold the adiabatic 
flame temperature Tad constant

• The 10% CO2 cases (Tad = 2025 K) is used as a 
baseline—all other cases with extra N2 dilution.

• Modified Damkӧhler scaling analysis contains 
elements of both transport (Le) and kinetics (SL):

• How will the chemistry effect change when we 
move from the corrugated flame to thin reaction 
zone regime?
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Effects on flame speed with EGR dilution 
at constant temperature
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