Development and Experimental Validation of LES Techniques for the Prediction of Combustion-Dynamic Processes in Syngas Combustion

MATTHIAS IHME¹ AND JAMES F. DRISCOLL²

(HAO WU¹, WAIL LEE CHAN², YUNTAO CHEN², PATTON ALLISON²)

Mechanical Engineering Department, Stanford University Department of Aerospace Engineering, University of Michigan

Research Objectives

Joint computational and experimental research program to develop simulation techniques for

- Prediction of autoignition and unstable combustion processes, at GT-relevant operating conditions
- Perform analysis of facility effects in flow-reactors and rapid compression machines to reconcile observed discrepancies between measurements and simulations

Overview

Research objectives

Fuel-effects in dual-swirl gas-turbine combustor

- LES modeling analysis
- Model development: Fidelity-adaptive combustion modeling
- Thermoacoustic network analysis

Facility-induced non-idealities

Conclusions

Experimental Setup

Gas-turbine model combustor by Meier et al.^{1,2}

- Aero-derived dual-swirl combustor
- Optical access for non-intrusive diagnostics → compreh experimental database
- Common air-supply through plenum
- Fuel injection between inner and outer swirlers

- 1. Weigand et al. Combust. Flame, 144, 205 (2006)
- 2. Meier et al. Combust. Flame, 144, 225 (2006)

Experimental Setup

Gas-turbine model combustor by Meier et al.^{1,2}

- Aero-derived dual-swirl combustor
- Optical access for non-intrusive diagnostics
- Common air-supply through plenum
- Fuel injection between inner and outer swirlers

Operating Conditions

- Consider stable operating point "flame A"
- Power: 35kW, Air: 18 g/s, Methane: 0.7 g/s

Flow field features

- Inner recirculation zone (IRZ)
- Outer recirculation zone (ORZ)

1. Weigand et al. Combust. Flame, 144, 205 (2006)

2. Meier et al. Combust. Flame, 144, 225 (2006)

Computational Setup

Computational mesh

- Mesh-types
 - > Fully block-structured hex-mesh
 - > Hybrid hex/tet meshes
- Wall-resolved mesh in swirler and base of combustion chamber

Mesh-investigation

	Numer of Elements (millions)			
Mesh	Plunum	Swirler	Comb. Chamber	Total
Hex1	0.5	6	1.5	8
Hex2	2.0	10	5	17
Hex3	2.0	20	21	43
Hyb1	0.5	2	4.5	7
Hyb2	2	10	8	20
Hyb3	5	75	20	100

Combustion Models

Models	Flamelet Progress Variable (FPV) ¹	FPV with Progress Variable (FPV-Cvar) ²	Filtered Tabulated Chemistry for LES (F-TACLES) ³
Flamelet regime	Non-premixed	Non-premixed	Premixed
Tab. variables	$\widetilde{Z}, \widetilde{Z''^2}, \widetilde{C}$	$\widetilde{Z}, \widetilde{Z''^2}, \widetilde{C}, \widetilde{C''^2}$	$\widetilde{Z}, \widetilde{Z''^2}, \widetilde{C}$
Z model	Beta PDF	Beta PDF	Beta PDF
C model	Dirac PDF	Beta PDF	Pre-filtering and efficiency function ⁴

Chemistry library generation

- GRI-2.11 detailed chemistry kinetics
- Unity Lewis number is assumed for flamelet calculations
- Progress variable, $C = Y_{H2O} + Y_{H2} + Y_{CO2} + Y_{CO}$
- Adiabatic combustion models
- 1. Pierce and Moin, JFM (2004)
- 2. Ihme, Cha, and Pitsch, PCI, 30 (2005)
- 3. Fiorina et al. Combust. Flame 157 (2010)
- 4. Charlette et al. Combust. Flame 131 (2002)

Unstable Combustion Processes Flow Field Results

Unstable Combustion Processes Flow Field Results

Simulation Results: Mean and RMS Velocities (h=5mm)

LES Model Evaluation

Main observation

- Prediction of velocity field insensitive to LES-combustion model selection
- Temperature and major species equally well predicted by all models
- Depending on flame region, minor species (CO, NO) exhibit substantial model sensitivities

Combustion modes

- Different combustion modes simultaneously present
- Selection of monolithic model often unsuccessful for predicting combustor performance
- Need for adaptive modeling combustion models

When is a model "good" enough

FIDELITY-ADAPTIVE COMBUSTION MODEL

Performance of Combustion Models

Model error depends on

- Quantities of interest (T, CO2, CO, NO)
- Combustion-physical processes (autoignition, local extinction/re-ignition)
- Combustion regimes: premixed, nonpremixed, multiphase

Model selection

- Single-mode combustion model
- Global control of error
- Balance between computational efficiency and accuracy
- Dependence of model accuracy on quantities of interest

Performance of Combustion Models

Computational Cost

Performance of Combustion Models

Objective: Develop **Pareto-Efficient Combustion (PEC)** framework under consideration of user-specific input about

> Quantities of interest

Qol

of

- > Set of combustion submodels
- Desired accuracy and cost

Computational Cost

PARETO-EFFICIENT COMBUSTION MODEL

User input

- Set of quantities of interest: $Q = \{Y_{CO2}, Y_{CO}, Y_{H2O}, Y_{NO}, \ldots\}$
- Set of candidate combustion models: *M*
 - > Reaction-transport manifolds: FPV, FPI, FGM, Inert Mixing, ...
 - > Chemistry manifold: detailed chemistry, skeletal, reduced, ...
- Penalty term λ for cost/accuracy trade-off

PEC algorithmic components

- Model selection
- Error assessment
- Coupling between subzones and different models
- Computational considerations

User input

- Set of quantities of interest: $Q = \{Y_{CO2}, Y_{CO}, Y_{H2O}, Y_{NO.}, ...\}$
- Set of candidate combustion models: *M*
 - > Reaction-transport manifolds: FPV, FPI, FGM, Inert Mixing, ...
 - > Chemistry manifold: detailed chemistry, skeletal, reduced,
- Penalty term λ for cost/accuracy trade-off

PEC algorithmic components

- Model selection
- Error assessment
- Coupling between subzones and different models
- Computational considerations

PEC Modeling Framework Model Selection

• Model assignment $\mathcal{M}:\Omega \to M$

Physical domain

✓
 Set of candidate models
 {FPV, FPI, Detailed Chemistry, …}

Solve optimization problem

 $\min_{\mathcal{M}:\Omega\to M} \mathcal{E}(\mathcal{M}) + \lambda \mathcal{C}(\mathcal{M}) \,,$

with

• Model error: $\mathcal{E}(\mathcal{M}) = \int_{\Omega} |e^{\mathcal{M}}(\mathbf{x})| d\mathbf{x}$, • Cost: $\mathcal{C}(\mathcal{M}) = \int_{\Omega} |c^{\mathcal{M}}(\mathbf{x})| d\mathbf{x}$.

User input

- Set of quantities of interest: $Q = \{Y_{CO2}, Y_{CO}, Y_{H2O}, Y_{NO.}, ...\}$
- Set of candidate combustion models: *M*
 - > Reaction-transport manifolds: FPV, FPI, FGM, Inert Mixing, ...
 - > Chemistry manifold: detailed chemistry, skeletal, reduced,
- Penalty term λ for cost/accuracy trade-off

PEC algorithmic components

- Model selection
- Error assessment
- Coupling between subzones and different models
- Computational considerations

PEC Modeling Framework Error Assessment – Key idea

- Evaluate model error $\Delta = \widehat{\phi} - \phi$

PEC Modeling Framework Error Assessment – Key idea

- Evaluate model error $\Delta = \widehat{\phi} \phi$
- Instead, evaluate compatibility of combustion model and CFD-solution

PEC Modeling Framework Error Assessment

- Evaluate compatibility by expanding error: $\Delta = \widehat{\phi} \phi$
- Drift from manifold¹ for each QoI and candidate model

$$\mathcal{D} = D_t \Delta |_{\Delta=0}$$
 Manifold curvature
 $= D_t \phi |_{\phi=\widehat{\phi}} - \frac{\partial \widehat{\phi}}{\partial \psi} \cdot \frac{D_t \psi}{Phase speed}$

Relate model error to manifold drift (for Qol's)

$$e^{\mathcal{M}} = \frac{1}{|Q|} \sum_{\alpha \in Q} w_{\alpha} \mathcal{D}_{\alpha}^{\mathcal{M}}$$

1 Pope, S. B. "Small scales, many species and the manifold challenges of turbulent combustion, Proc. Combust. Inst. 34, 2013

Results

TRIBRACHIAL FLAME

Model Problem: Tribrachial Flame

Configuration

- CH4-Air laminar flame
- Stratification of reactants

Combustion submodels

- Reaction-transport manifold
 - Flamelet Progress Variable (FPV)
 - Flame Prolongation of ILDM (FPI)
 - Inert Mixing (IM)
- Chemistry Manifold
 - > Detailed chemistry (DC): GRI 3.0
 - > Skeletal mechanism (SC): DRM-19

Stanford University

Kioni, et al. CnF (1993) Dold CnF (1989) See, Ihme PCI (2014) Pierce & Moin (2001) Fiorina et al. CnF (2010)

Baseline Case

Candidate Models	Quantities of Interest	Penalty
 DC: Detailed chemistry SC: Skeletal chemistry FPI: premixed flamelet model FPV: diffusion flamelet model Inert mixing model 	$\{$ CO, CO ₂ , H ₂ , H ₂ O, NO $\}$	0.2

PEC-setup: $M = \{DC, FPV, FPV, IM\}, Q=\{CO2, CO, H2O, H2, NO\}, \lambda = 0.2$ Results: mass fraction of CO

PEC-setup: $M = \{DC, FPV, FPV, IM\}, Q=\{CO2, CO, H2O, H2, NO\}, \lambda = 0.2$ Results: mass fraction of CO

Cost/accuracy trade-off

Candidate Models	Quantities of Interest	Penalty
 DC: Detailed chemistry SC: Skeletal chemistry FPI: premixed flamelet model FPV: diffusion flamelet model Inert mixing model 	$\{\mathbf{CO}, \mathbf{CO}_2, \mathbf{H}_2, \mathbf{H}_2\mathbf{O}, \mathbf{NO}\}$	$2 imes 10^{-3}$ \vdots 10

PEC-setup: *M* = {*DC*, *SC*, *FPV*, *FPV*, *IM*}, *Q*={*CO2*, *CO*, *H2O*, *H2*, *NO*}

PEC-setup: *M* = {*DC*, *SC*, *FPV*, *FPV*, *IM*}, *Q*={*CO2*, *CO*, *H2O*, *H2*, *NO*}

Results Transient Flame

- Transient flame simulation by seeding inflow with turbulent velocity profile
- PEC-parameters
 - > Qol: $Q = \{Y_{CO_2}, Y_{H_2O}, Y_{H_2}, Y_{CO}, Y_{NO}\}$
 - > Candidate combustion models: FPI, FPV, IM, DC
 - > Penalty term: $\lambda = 0.2$

Results Transient Flame

Prediction of flame-tip location (relative to DNS (λ=0) results)

Application to LES

Extension of PEC to LES

Extension of drift term to filtered LES quantities

$$\mathcal{D}^{\mathcal{M}} = \widetilde{D}_t \langle \Delta \rangle |_{\widetilde{\Delta} = 0}$$
$$= \widetilde{D}_t \langle \phi \rangle |_{\langle \phi \rangle = \langle \widehat{\phi} \rangle} - \frac{\partial \langle \widehat{\phi} \rangle}{\partial \langle \psi \rangle_{\alpha}} \widetilde{D}_t \langle \psi \rangle_{\alpha}$$

Closure model: For reactive scalar transport equation, $\widetilde{D}_t \langle \Delta \rangle$ appears in unclosed form

$$\widetilde{D}_{t} = [\widetilde{D}_{t}] + \left(\widetilde{D}_{t} - [\widetilde{D}_{t}]\right)$$
Closure
Model
Closure Error

Closure for filtered drift term

$$\left[\mathcal{D}\right]^{\mathcal{M}} = \left[\widetilde{D}_{t}\right] \left\langle \phi \right\rangle |_{\left\langle \phi \right\rangle = \left\langle \widehat{\phi} \right\rangle} - \frac{\partial \left\langle \widehat{\phi} \right\rangle}{\partial \left\langle \psi \right\rangle_{\alpha}} \left[\widetilde{D}_{t}\right] \left\langle \psi \right\rangle_{\alpha}$$

Extension of PEC to LES

Application to DLR flame

- N2-diluted CH4/Air-flame
- Re = 15,200 (Ub=42.2 m/s)
- Nozzle diameter: D=8 mm
- Fuel-stream: CH4/H2/N2

Model assignment

- Inert mixing
- FPV-diffusion
- Finite rate (GRI 3.0) based on instantaneous drift)

Meier, Barlow, Chen, and Chen, Combust. Flame, 123 (2000) Schneider, Dreizler, Janicka, and Hassel, Combust. Flame, 135 (2003)

Extension of PEC to LES

Application to DLR flame

- N2-diluted CH4/Air-flame
- Re = 15,200 (Ub=42.2 m/s)
- Nozzle diameter: D=8 mm
- Fuel-stream: CH4/H2/N2

Model assignment

- Inert mixing
- FPV-diffusion
- Finite rate (GRI 3.0) based on instantaneous drift)

Assignment

Summary and Conclusions

 Developed a Pareto-Efficient combustion (PEC) framework for the general description of complex flame configurations

PEC-input parameters

- > Set of quantities of interest
- > Set of candidate combustion models
- > Penalty term
- Application of PEC to laminar and turbulent flame, demonstrating
 - > Adaptation of model assignment
 - Computational cost adjustable by 40X
 - > Consistently more accurate than single-regime model

Wu, H., See, Y. C., Wang, Q., and Ihme, M., "A Pareto-efficient combustion framework with submodel assignment for predicting complex flame configurations." Combustion and Flame, in press.

