

A Joint Experimental/Computational Study of Non-idealities in Practical Rotating Detonation Engines

PI: Mirko Gamba

Co-I: Venkat Raman

Department of Aerospace Engineering University of Michigan

2015 UTSR Workshop, November 3-5, 2015 Atlanta, GA

Summary

• Title:

- A Joint Experimental/Computational Study of Non-idealities in Practical RDEs

• Funding agency:

- University Turbine Systems Research/NETL
- Funding Opportunity Number: DE-FOA-0001248
- Topic Area 2: Pressure Gain Combustion R&D
- Project manager: David Lyons

• Personnel:

- PI: Mirko Gamba, University of Michigan
- Co-I: Venkat Raman, University of Michigan
- Students currently involved:
 - Fabian Chacon
 - Yasin Abul-Huda
 - Chadwick Harvey
 - Romain Fievet
- Key external collaborators:
 - Dr. John Hoke, Innovative Scientific Solution, Inc. (ISSI)
 - Drs. Adam Holley and Peter Cocks, United Technology Research Center (UTRC)
 - Dr. K. Kailasnath, Navy Research Labs (NRL)

Outline

- Introduction to the problem and general approach
- Experimental activities
- Computational activities

Outline

• Introduction to the problem and general approach

- Experimental activities
- Computational activities

Overarching objectives

• Objective 1:

Develop canonical and operational RDE configurations, as well as imaging-based laser diagnostics for understanding fuel stratification, leakage, parasitic combustion and detonation structure under nonideal conditions in RDEs.

• Objective 2:

Develop a comprehensive picture of the fundamental physics governing non-idealities and how they impact RDE performance and operability from both experiments and simulations.

• Objective 3:

Develop detailed computational tools (DNS & LES) for studying detonation wave propagation processes in RDEs to aid design.

Expected outcomes

• Outcome 1:

Identify the sources and properties of non-idealities in RDEs, their contribution to loss in pressure gain, and potential design limitations

• Outcome 2:

Detailed experimental tools and measurements (databases) about fundamental aspects of RDEs will become available to the RDE design community.

– e.g., transfer of techniques and data to DOE/NETL, UTRC, ISSI, NRL

• Outcome 3:

Detailed computational tools (DNS/LES) as well as combustion models with detailed chemistry for pressure gain combustion will be made available to the RDE design community.

- -e.g., openFoam development of RDE modeling
- -e.g., transfer of detonation computational models to DOE/NETL, UTRC, ISSI, NRL

Objectives and tasks

(Some) Practical challenges

- Detonation initiation and sustainment
- Produce and maintain pressure gain
- Injector design
 - Mixing, minimize pressure drop, prevent back-flow
- Integration with turbomachinery (compressor/turbine)
 - Unsteady operation
- (High-frequency) unsteady loads (mechanical/thermal)
- Emission (NOx,UHC) mitigation

Non-idealities and loss of pressure gain

Detonation non-idealities

- Incomplete fuel/air mixing
- Fuel/air charge stratification
- Mixture leakage (incomplete heat release)
- Parasitic combustion:
 - Premature ignition (e.g., burnt/unburnt interface)
 - Stabilization of deflagration (flame)
- Detonation-induced flow instabilities
 - Richtmyer-Meshkov (R-M) instability
 - Kelvin-Helmholtz (K-H) instability
- They lead to loss in pressure gain
 - Linked to loss of detonation propagation
- Additional losses exist during flow expansion
 - Secondary shock and (multiple) oblique shock
 - Flow instabilities (e.g., K-H instability)
 - Mixture leakage through burn/unburnt interface

Past/current analysis/investigation approach

- Past/current approach is based on global performance assessment
- Experimentally:
 - -Global performance assessment
 - Low-fidelity and/or global metrics
 - Pressure measurements
 - Luminosity-based analysis (optical access is a challenge!)
 - Parametric study
 - Variation with flow rate, (global) equivalence ratio, fuel, pressure
 - Injector design / annulus / exhaust flowpath testing
- Prediction/computation
 - Euler solver or limited viscous effects modeling
 - One-dimension, perfect mixture
 - Single-step reaction
 - Induction-time based combustion models
 - Neglect mixing, three-dimensional viscous effects and turbulence From: (top) Fotia et al., AIAA 2015-0631

Our approach: a multi-level physics study

Unit-physics decomposition

- Laser-based imaging
- Mixing measurement
- Detonation structure
- Temperature and species imaging

Injection & mixing

- Free single injector
- Free multiple injection
- Confined multiple injection
- Shock-induced mixing
- DNS/LES modeling
- Experiments

Turbulence & detonations

- Linear analogue
- Detonations in stratified mixtures
- DNS/LES modeling
- Experiments

Detailed modeling

- Variable mixture ignition model
- Homogeneous reactor model with tabulated ignition times
- Non-equilibrium

Outline

- Introduction to the problem and general approach
- Experimental activities
- Computational activities

Experimental multi-level approach

RDE full system:

- Link between mixing and performance
- Design from ISSI/AFRL

Linearized analogue:

- Detonation structure
- Detonation/turbulence interaction
- Detonation in stratified mixtures
- Design from ISSI/AFRL

Single or multiple injectors:

- Mixing studies
- Shock-induced mixing
- Our starting point

Shock-induced mixing: detonation/shock analogy

Detonation

Shock analogy

- Important parameters
 - Wave speed D (Mach number)
 - -Jet-to-ambient (induced flow) density and velocity ratios
 - Injection pressure and configuration

From: Schwer D. A. and Kailasanath K., AIAA 2010-6880

Scaling of detonation/shock analogy

Scaling of detonation/shock analogy

- Flexible configuration
 - Single isolated injector
 - Multiple isolated injectors
 - Confined multiple injectors
 - Different injector configurations can be tested conveniently
- Well-suited for controlled unitphysics experiments
 - Quantitative mixing measurements
 - Flexibility in range of conditions
 - Shock strength
 - Injection details (speed, configuration, molecular weight)
 - What learnt here can be extended to the linearized RDE

- Flexible configuration
 - Single isolated injector
 - Multiple isolated injectors
 - Confined multiple injectors
 - Different injector configurations can be tested conveniently
- Well-suited for controlled unitphysics experiments
 - Quantitative mixing measurements
 - Flexibility in range of conditions
 - Shock strength
 - Injection details (speed, configuration, molecular weight)
 - What learnt here can be extended to the linearized RDE

- Flexible configuration
 - -Single isolated injector
 - Multiple isolated injectors
 - Confined multiple injectors
 - Different injector configurations can be tested conveniently
- Well-suited for controlled unitphysics experiments
 - Quantitative mixing measurements
 - Flexibility in range of conditions
 - Shock strength
 - Injection details (speed, configuration, molecular weight)
 - What learnt here can be extended to the linearized RDE

- Flexible configuration
 - -Single isolated injector
 - Multiple isolated injectors
 - Confined multiple injectors
 - Different injector configurations can be tested conveniently
- Well-suited for controlled unitphysics experiments
 - Quantitative mixing measurements
 - Flexibility in range of conditions
 - Shock strength
 - Injection details (speed, configuration, molecular weight)
 - What learnt here can be extended to the linearized RDE

- Flexible configuration
 - Single isolated injector
 - Multiple isolated injectors
 - Confined multiple injectors
 - Different injector configurations can be tested conveniently
- Well-suited for controlled unitphysics experiments
 - Quantitative mixing measurements
 - Flexibility in range of conditions
 - Shock strength
 - Injection details (speed, configuration, molecular weight)
 - What learnt here can be extended to the linearized RDE

- Flexible configuration
 - -Single isolated injector
 - Multiple isolated injectors
 - Confined multiple injectors
 - Different injector configurations can be tested conveniently
- Well-suited for controlled unitphysics experiments
 - Quantitative mixing measurements
 - Flexibility in range of conditions
 - Shock strength
 - Injection details (speed, configuration, molecular weight)
 - What learnt here can be extended to the linearized RDE

Shock wave from shock tube

Camera

Laser sheet

forming optics

Interaction of shock wave with turbulent jet

M = 1.39

• Detonation-induced mixing analogue

- Visualization data
 - -100 kHz movie with 300 ns exposure (shock smears by 0.13 pixel)
 - Injection of H_2 into still air subject to a Mach 1.39 shock wave
 - Played back at 5 frames/second
 - Elapsed time 0.5 ms (50 frames)

Interaction of shock wave with turbulent jet

Example of diagnostic application: Making LIF measurements quantitative

Study of transverse jets in supersonic crossflow – non-reacting mixing using toluene PLIF thermometry

Interaction of shock wave with turbulent jet: Parametric study and outcome M = 1.39

- Parameters to be varied
 - Shock strength (Mach #)
 - Injectant/ambient species
 - Light/heavy vs heavy/light
 - Injectant-to-ambient density and velocity ratios
 - Injection pressure ratios
 - Injection configuration

- Performance metrics
 - Degree of mixing (spatial measurement)
 - Plume shape
 - Width, corrugation, deflection
 - Length and time scales of injector response
 - Scaling with working parameters
 - Density & velocity ratios
 - Plume compression rate

Experimental multi-level approach

RDE full system:

- Link between mixing and performance
- Design from ISSI/AFRL

Linearized analogue:

- Detonation structure
- Detonation/turbulence interaction
- Detonation in stratified mixtures
- Design from ISSI/AFRL

Single or multiple injectors:

- Mixing studies
- Shock-induced mixing
- Our starting point

U

2

Suite of diagnostic techniques for the study of RDE physics

- Traditional techniques:
 - Pressure, heat flux, flame chemiluminescence
 - Schlieren imaging
- Laser-based imaging diagnostics:
 - Planar laser-induced fluorescence (PLIF) mixing and flame marker
 - Two-color toluene PLIF thermometry and mixing (non-reacting) imaging
 - OH/CH₂O/CH/NO PLIF imaging
 - e.g., Simultaneous OH/CH₂O PLIF imaging for flame structure and heat release distribution study in premixed combustion
 - Rayleigh scattering imaging (thermometry in reacting flows)

Simultaneous OH/CH₂O PLIF imaging in inverted oxy-fuel coaxial non-premixed CH₄ flames

Next steps for experimental program

- Detailed studies of shock-induced mixing in single and multiple injector configurations
 - Design of isolated injectors completed, under fabrication
 - Lesson-learnt will be used to develop the confined injector configuration
 - Mixing measurements (temperature and injectant concentration)
- Design study of linearized RDE analogue
 - Develop in consultation with AFRL
 - Instrumented with optical access for laser diagnostics
 - Fabrication and deployment of system
 - Use what learnt from mixing measurements to link unmixedness and detonation structure
 - Speciation distribution
 - Detonation speed and height, pressure time history
 - Transition and stabilization to deflagration mechanisms

Outline

- Introduction to the problem and general approach
- Experimental activities
- Computational activities

Outline of Computational Program Discussion

- Computational platform for pressure gain combustion
- Shock-jet interaction simulations to aid experiments
- Nonequilibrium chemistry in detonations

UM Computational Program

- Develop end-to-end simulation capability for design and optimization
 - -Computational tools
 - -Models for turbulence and combustion
 - -Inverse design methods
 - -Fundamental chemistry analysis

Validation program

- -Multi-level UM experimental data
 - Simple shock-wave interactions to realistic RDE configurations
- -External and legacy data
 - Univ. of Maryland linearized RDE experiment (Prof. Yu)
 - Other RDE projects within the UTSR program

Computational Platform

- Computational platform should be able to handle shockcontaining reacting flows in arbitrary geometries
 - -Shock-capturing
 - -Resolution of turbulence structures
 - -Detonation and reaction capability
 - -Unstructured and adaptive grids
 - -Ability to switch between LES, RANS, and Euler descriptions

• Inverse design capabilities

- Adjoint tools for target-driven design modifications and optimization
- -Technology for rapid assessment of designs

Computational Tools

- Open source platform
 - Free and rapid dissemination of results and tools
 - 10K+ cores scaling
 - Adaptive meshing, adjoint tools, complex geometries, adaptive numerics
 - Integration to chemistry modules being implemented by UM
 - CAD-based meshing

Shock-Jet Interaction

• Simulations to aid experiments

 Understand turbulent jet interactions with a blast wave

• Jet diameter of 2mm

- Domain (20D X 20D X 10D)
- -256 X 128 X 128 grid points

• LES calculations

- Pade' scheme
- -Artificial viscosity in near-shock region
 - Shock-sensor using pressure gradients
- -1024 cores for 4 hours

Density Evolution

Experimental Signal Reconstruction

• Numerical Schlieren

Experimental Signal Reconstruction

• LIF signal

Effect of Thermal Nonequilibrium

• Shocks generate nonequilibrium

-Internal modes of molecular motion not in equilibrium

-Implies that population distribution is non-Boltzmann

• In shock-containing flows

-Nonequilibrium has been shown to affect chemical reactions

-Often delays ignition

Detonations

-Conditions can support vibrational nonequilibrium

-Thermal and rotational components equilibrate very quickly (roughly 2-10 collisions for normal conditions)

Is Nonequilibrium Important?

- Question raised by NRL (Kailasnath and Schwer)
- No easy answer
 - –Post-detonation pressures/temperatures high
 - Relaxation time becomes very short
 - -Wave structure could be affected
 - Is induction time altered?
 - -Are reactions suppressed?
 - Nonequilibrium does not affect all reactions equally

Nonequilibrium and Chemical Kinetics

• Nonequilibrium alters chemical rates

-Equilibrium rates assume Boltzmann distribution

• Difficult to obtain rates experimentally

-Resolving state-to-state rates is non-trivial

Computational chemistry

-Allows explicit calculation of collision cross-sections

• UM Highly Parallel Quasi-Classical Trajectory Code

- -Can be run on 10K+ cores (linear scaling)
- -Computes 100-1000 billion trajectories a day

QCT Trajectory

1-D Detonation Calculations

- Consider stoichiometric H2/O2/N2 system
- Ambient conditions
 - -T = 298 K
 - -P = 1 atm
 - -M = 4.6
- 19 reaction chemical mechanism
- Each species with individual vibrational temperatures

- Single translational and rotational temperature for all species

• Millikan and White with CVCV model used to determine T-V and V-V energy exchange rates

Modeling T-V and V-V energy exchange

• Inert simulation shows relaxation of T_v back to equilibrium

- -T-V timescale is dependent on species (H₂ relaxes slowly)
- –V-V energy exchange "averages" the vibrational relaxation time, so that each species relaxes at approximately the same rate

Effect of Nonequilibrium

- Nonequilibrium delays reactions
- Slight increase in induction time
- Strong H₂ nonequilibrium even post detonation

Next Steps for Computational Program

• Start the FENICS solver development

Graduate student preparing initial test version for shock-containing flows
Adjoint-enabled

• Detonation simulations for linearized RDEs

Solver being prepared to run anticipated experimental test conditions
Will consult with AFRL and NRL to determine appropriate configurations

• Nonequilibrium effects

-Develop models for induction time

Combustion model development

Use detonation DNS calculations to determine the appropriate model structure

Questions?