

An Experimental and Modeling Study of NO_x- CO Formation in High Hydrogen Content (HHC) Fuels Combustion in Gas Turbine Applications (DE-FE0012005)

Tanvir Farouk Bihter Padak

University of South Carolina, Columbia, SC 29208, USA

Fred Dryer

Princeton University, Princeton, NJ 08544, USA

2015 University Turbine System Research Workshop Atlanta, GA

November 3rd – 5th, 2015

Project Participants

University of South Carolina and Princeton University

PI: Dr. Tanvir Farouk, Assistant Professor University of South Carolina– Mechanical Engineering

- Sheikh Farhan Ahmed Graduate Student
- Fahd Ebna Alam Graduate Student

Co-PI: Dr. Bihter Padak, Assistant Professor University of South Carolina– Chemical Engineering

• Nazli Asgari – Graduate Student

Co-PI: Dr. Frederick Dryer, Professor

Princeton University – Mechanical and Aerospace Engineering

- Mac Haas Technical Staff
- Fahd Ebna Alam Visiting Researcher (8 mos)

UNIVERSITY OF

Objectives

- Detailed and validated coupled HHC + NO_x kinetic model
- .• New experimental speciation data for the oxidation kinetics of HHC fuel compositions in presence of impurities.
- Understanding of CO, NO and NO_2 formation and interactions in shear layer flow regimes (hot and cold flow interactions). NO NO_2 conversion in hot-cold shear layer interaction and EGR.
- Detailed and reduced kinetic models for HHC fuels including detailed fuel compositions and NO_x.

Tasks

- Study of reactivity and speciation data for NO_x under various conditions
- Studies of CO, NO, NO₂ formation and conversion for NO \rightarrow NO₂ in shear/mixing layers
- Studies of high pressure HHC fuel kinetics using a High Pressure Laminar Flow Reactor (HPLFR)
- Kinetic assessment, validation and development of a comprehensive HHC fuel + NO_x kinetic mechanism

Presentation Outline

- Research Team Members
- Project Objectives
- Research Tasks
- Year 2 progress

Kinetic Modeling of NO_x formation in HHC Fuels
– Tanvir Farouk

Experiments for Speciation Measurements – Bihter Padak

Measurement of Small Species Data and Modeling Implications

- Frederick Dryer (presented by Tanvir Farouk)

• Summary

 Predictions of NO_x to address strict emission standards

 Trace emittents – NO_x influences the global and intricate combustion dynamics

> • Fuel impurities source of fuel (C₁ $C_2 \dots$) – emissions

considers the interactions of small species and <u>emittents,</u> particularly on natural gas combustion the resulting model will likely have poor fidelity to be considered for engineering applications

Kinetic Modeling

Current Predictive Models of NO_x Formation

Global combustion targets are insufficient to provide the necessary constraining conditions for assessment and model development of NO_x interactions with Hydrogen and Syngas Oxidation.

Detailed species evolution measurement necessary

Considerable differences in even qualitative behavior among popular literature models => improvements are possible.

Mathieu et al., Proc. Combust. Inst. 34 (2013) Rasmussen et al., Int. J. Chem. Kinet. 40 (2008)

Proposed H₂/CO/NO_x Model

Model Elements

¹Burke et al., Int. J. Chem. Kinet. 44 (2012) ²Metcalfe et al., Int. J. Chem. Kinet. 45 (2013) ³Skreiberg et al., Combust. Flame 136 (2004) ⁴Klippenstein et al., Combust. Flame 158 (2011)

Dependence of τ_{ig} on initial NO₂ doping for H₂/O₂ system

100 ppm → insignificant 400 ppm or higher → reactivity decreases

Mathieu et al., Proc. Combust. Inst. 34 (2013)

Dependence of τ_{ig} on initial NO₂ doping for H₂/O₂ system

High pressure non-monotonic behavior captured by the model

Mathieu et al., Proc. Combust. Inst. 34 (2013)

Dependence of $\tau_{i\alpha}$ on initial NO₂ doping for H₂/O₂ system

1600 ppm - reactivity decreases 1600 ppm - reactivity decreases

> High pressure non-monotonic behavior captured by the model

Mathieu et al., Proc. Combust. Inst. 34 (2013)

Effect of initial H-atom impurities on the ignition delay of H₂/O₂ system

Proposed Model Performance: PFR Speciation for $H_2/O_2/NO_2/N_2$ System

prediction of fuel $NO_2 \rightarrow NO$ conversion: (i) direct (ii) through the fuel $NO_2 \rightarrow NO$ conversion: (i) direct (ii) through the fuel $NO_2 \rightarrow NO$ conversion: (i) direct (ii) through the fuel $NO_2 \rightarrow NO$ conversion: (i) direct (ii) through the fuel $NO_2 \rightarrow NO$ conversion: (i) direct (ii) through the fuel $NO_2 \rightarrow NO$ conversion: (ii) direct (iii) through the fuel $NO_2 \rightarrow NO$ conversion: (ii) direct (iii) through the fuel $NO_2 \rightarrow NO$ conversion: (i) direct (ii) through the fuel $NO_2 \rightarrow NO$ conversion: (ii) direct (iii) through the fuel $NO_2 \rightarrow NO$ conversion: (ii) direct (iii) through the fuel $NO_2 \rightarrow NO$ conversion: (iii) through the fuel $NO_2 \rightarrow NO$ conversion: (iii) through the fuel $NO_2 \rightarrow NO$ conversion: (ii) direct (iii) through the fuel $NO_2 \rightarrow NO$ conversion: (iii) through the fuel $NO_2 \rightarrow NO$ conversion: (ii) direct (iii) through the fuel $NO_2 \rightarrow NO$ conversion: (iii) through the fuel $NO_2 \rightarrow NO$ co

(*ii*) through intermediate HONO(*iii*) through intermediate HNO₂

Mueller et al., Int. J. Chem. Kinet. 31 (1999)

conversion

Proposed Model Performance: Variable Initial Conditions for CO/H₂O/O₂/NO System

Variable Initial Pressure

✓ Model reasonably predicts the experimental trends with variable initial pressure

✓ Complete NO-NO₂ interconversion without any formation of molecular nitrogen

Mueller et al., Int. J. Chem. Kinet. 31 (1999)

Proposed Model Performance: Variable Initial Conditions for CO/H₂O/O₂/NO System

Variable Initial Temperature

✓ Model reasonably predicts the experimental trends with variable initial Temperature

Mueller et al., Int. J. Chem. Kinet. 31 (1999)

Proposed Model Performance: PFR Species Evolution for CO/H₂/NO_x Oxidation System

Rasmussen et al., Int. J. Chem. Kinet. 40 (2008)

Proposed Model Performance: PFR Species Evolution for CO/H₂/NO_x Oxidation System

Rasmussen et al., Int. J. Chem. Kinet. 40 (2008)

Effect of Physical and Chemical Perturbations on the Explosion limit and Ignition Delay Time of H_2/O_2

Physical and chemical perturbation effects on the explosion limit as well as the ignition delay time of hydrogen

Chemical Perturbation-initial NO doping

Base case

50 ppm NO

200 ppm NO

- With an increase in initial NO concentration, the initiation point of the second explosion limit moves towards higher pressures and lower temperatures
- The second explosion limit demarcation line becomes more and more flat with an increase in initial NO concentration
- The initiation point of the third explosion limit shifts toward lower pressures and higher temperatures with an increase in initial NO concentration

Effect of Physical and Chemical Perturbations

Physical Perturbation- Fluctuating pressure with Gaussian random amplitude $(\pm 20\%)$ and 100 Hz frequency

- With pressure perturbation, the initiation point of the second explosion limit moves towards higher temperatures and the initiation point of the third explosion limit moves towards lower temperatures
- ✓ The third explosion limit demarcation line becomes less steep with pressure perturbation

Summary

- $C_0 C_4 / NO_x$ model has been assembled
- $H_2/CO/NO_x$ model has been validated
- Influence of trace impurities on combustion characteristics
- Chemical and physical perturbation effects on ignition delay and explosion limits for H_2/O_2 systems

• Trace NO_x – emittents can alter the combustion behavior, global/optimized models can not capture intricate features

Experimental Setup for Speciation Measurements

Scope of Work

The presented work is focusing on NO_x formation in a syngas/air combustion system at atmospheric pressure.

Syngas tests were carried out with Φ :0.5-1, H₂/CO from 1:1 to 1:4, total flow rate of 3-6 slpm.

The first set of experiments were conducted at atmospheric pressure and the second part is going to be done at elevated pressures.

Schematic of Experimental Setup

Experimental Plan

- Burner stability tests
- <u>Temperature measurements</u>
- Flame temperatures
- Radial temperature profile
- > Axial temperature profile
- <u>Speciation data</u>
- > NO, NO₂ and N₂O concentration profiles
- > CO concentration profile

Temperature Measurements

Flame T measurements Radial and axial T profile measurements

- Radiation correction was applied to T measurements
- Using the R-type thermocouple, the radiation loss was % 8

Ceramic insulator

Thermocouple diagram

Flame Temperature Measurements

- With increasing the flow rate the distance between the burner plate and the reaction zone grows and heat transfer is reduced.
- Decreasing the H₂/CO ratio results in an increase in the flame temperature due to increased heat release by the CO+OH reaction.

Temperature Profiles

H₂/CO:1 Φ: 0.5

- Temperature decreases as going away from the burner.
- A uniform temperature profile was obtained for a radius of 7mm.

Temperature Predictions with CFD Modeling

 CFD simulations reasonably predicts the experimental temperature distribution

NO_x Measurements with FTIR Spectroscopy

- FTIR spectroscopy is employed for speciation measurements.
- Overlapping peaks for the gases of interest.

• To deconvolute the overlapping peaks, multivariate calibration was conducted.

Species	NO-H ₂ O	NO ₂ -H ₂ O	N ₂ O-H ₂ O
Experimental sets	36	36	36

NO_x vs. Φ with H₂/CO:1 and 500 ppm NO in the feed

NO_x vs. H_2/CO with $\Phi = 0.5$ and 500 ppm NO in the feed

NO, NO₂ profiles at different heights above burner (HAB)

 $H_2/CO=1$, $\Phi=0.5$ and 500 ppm NO in the feed

- Initially NO concentration increases due to NO₂ to NO conversion
- At lower T NO decreases due to NO to N₂ conversion
- No N₂O was observed.

35

NO, NO₂ profiles at different heights above the burner (HAB)

 Φ =0.5 and 0.8, H₂/CO=1 and 500 ppm NO injection

NO_x Speciation with CFD Modeling

High Pressure System

Summary

- Axial and radial temperature profiles has been measured temperature of the reacting zone.
- NO_x speciation data at atmospheric pressure was collected at different conditions.
- There was a reasonable agreement between experimental data and simulations.

Future Work

- NO_x-CO speciation data will be collected at higher pressures (1-15atm), considering the effect of different parameters such as hydrocarbons and diluents.
- Effect of exhaust gas recirculation will be investigated.

Small Species Flow Reactor Pyrolysis/Oxidation Database

NO_x-perturbed CH₄+2%C₂H₆ "natural gas" oxidation

Effect of increased C_2H_6 doping in CH_4 (without NO_x addition)

(recap from last UTSR review meeting)

Overall initial reactivity increases <u>threefold</u> for just 4% C₂H₆ in CH₄

- Additional reactivity expected with small (< 100 ppm) NO_x addition
- NO_x perturbed experiments use 2% C_2H_6 in CH_4 as a representative "natural gas"

Experimental Setup: HPLFR Schematics

Facility Overview Sample Analysis Reactor Subsystem Subsystem Exhaust Sample MicroGC FTIR Probe Pdu Feed/Calibration Exhaust Subsystem Purge T3 . MFC 1 3-Zone Tube Furnace MFC 2 T2 MFC 3 MFC 4 Duct Evaporator Syringe Pump NC Vent

Reactor Subsystem Detail

NO_x Perturbed Methane/Ethane Blend Study in High Pressure Laminar Flow Reactor

- \bullet Exploration of intricate interactions between $C_{1\mathchar`2}$ and NO_X kinetics.
- Constrain/further validate the Fenimore NO_x mechanism.
- \bullet NO_x kinetics for "Shale Gas" (near-future potential as stationary power generation gas turbines).

Experimental Details

Non-Reacting Cases (Nominal Values, ppm)								
	CH ₄	=	9800	%C ~ 1.02%				
	C_2H_6	=	200	Avoids excessive exothermicity				
	O ₂	=	20300 (• =1.0)					
	NO	=	Nil					
	Ar	=	Balance					
Reacting Cases Run (Nominal Values, ppm)								
	CH ₄	=	9800					
	C_2H_6	=	200					
	O ₂	=	20300 (φ=1.0) / 40600 (φ=0.5) / 10150 (φ=2.0)					
	NO	=	25					
	Ar	= Balance						
P, T & Q _{blend} (Nominal Values)								
	Ρ	=	5 & 10 atm					
	т	=	820 K					
	Q _{blend}	=	650 sccm &	1300 sccm				

HPLFR Experimental Measurements

- Measurement Uncertainty
 - $CH_4 \sim 2\%$ $C_2H_6 \sim 4\%$ $O_2 \sim 2\%$
- Illustration of O_2 measurement for rich & lean condition is scaled with respect to $\phi = 1.0$ case
- Quantification in progress for CO CO₂ C₂H₂ H₂O

Simulation # Non-Reacting Case

P (Nominal) = 10 atm T (Nominal) = 820 K Φ = 1.0

NO_x is not introduced

Fuel conversion is not observed.

Konnov et al. (2009) is particularly overly reactive under nonreacting condition !!!

- # A.A. Konnov, C&F (2009)
- TU Denmark # S. Gersen et al, POCI (2011)

KONNOV

Simulation # Reacting Case (with NO_x)

P (Nominal) = 10 atm T (Nominal) = 819 K **Φ** = 1.0 NO = 25±1 ppm

Trace NO can enhance reactivity substantially !

CNRS is over-reactive whilst KONNOV mechanism is less reactive, even under reacting environment !!

TU Denmark predicts the best !!! Includes Nitromethane/ethane chemistry.

Simulation # Reacting Case (with NO_x)

P (Nominal) = 10 atm T (Nominal) = 815 K Φ = 0.5 NO = 25±1 ppm

Chemkin-Pro based imposed temperature profile Plug flow reactor (PFR) Model is used to simulate all three reacting cases

Simulation # Reacting Case (with NO_x)

P (Nominal) = 10 atm T (Nominal) = 815 K Φ = 2.0 NO = 25±1 ppm

Additional Small Species Database Efforts

Isobutene pyrolysis/oxidation near 1145 K

5000 ppm iC₄H₈, $\phi = \infty$

- Isobutene is a significant intermediate from isobutane oxidation
- Oxidation is relatively slow due to resonantly-stabilized isobutenyl radical
 - Pyrolytic pathways are competitive with oxidative ones
- Limited (reliable) pyrolysis data available in the literature
- Present flow reactor data motivated
 significant revisions to iC₄H₈ pyrolysis
 kinetics of previous model iteration
- Major/minor species generally predicted well, with some over prediction of C_2H_6 likely due to consumption pathways (i.e., not formation via CH_3 recombination)

49 1. Zhou, Li, <u>O'Connor</u>, Somers, <u>Thion</u>, Keesee, Mathieu, Petersen, DeVerter, Oehlschlaeger, Kukkadapu, Sung, Alrefae, Khaled, Farooq, Direnberger, Glaude, Battin-LeClerc, Santner, Ju, Held, Haas, Dryer, and Curran, submitted to *Combust Flame*

Additional Small Species Database Efforts

0.12

0.12

1.29

Isobutene pyrolysis/oxidation near 1145 K

50

1. Zhou. Li, O'Connor. Somers, Thion, Keesee, Mathieu, Petersen, DeVerter, Oehlschlaeger, Kukkadapu, Sung, Alrefae, Khaled, Farooq, Direnberger, Glaude, Battin-LeClerc, Santner, Ju, Held, Haas, Dryer, and Curran, submitted to Combust Flame

Experimental Measurements with (In-Progress) Modeling

Isobutane oxidation

• Six speciated oxidation experiments at temperatures similar to isobutene experiments discussed:

	Nominal Initial Conditions						
Experiment Reference	Temperature (K)	iC4H10 (ppm)	O2 (ppm)	Nominal φ			
IB1	1154	850	18100	0.3			
IB2	1191	1500	12400	0.8			
IB3	1184	2400	10400	1.5			
IB4	1110	1100	23900	0.3			
IB5	1152	1600	15100	0.7			
IB6	1225	1500	6050	1.6			

- Present modeling efforts focused on testing robustness of assumed initial conditions (ideal zero dimensional vs. time-shift vs. computational re-initialization vs. others)
- Updated kinetic sub-model for isobutene has yet to be tested against present flow reactor isobutane data

Experimental Measurements with (In-Progress Modeling)

Isobutane oxidation – Case IB2 (1191 K, 1 atm)

- Consumption of iC₄H₁₀ and daughter iC₄H₈ predicted well
- Discrepancies primarily due to under-predicted T evolution?
- Effect of updated iC₄H₈ sub-model?

Overall Summary

- H₂/CO/NO_x model developed validated against a large dataset
- $C_0 C_4 NO_x$ is being developed
- Chemical and physical perturbation effects on global combustion markers
- Atmospheric pressure burner experiments, flame- post flame speciation, temperature measurements
- Multi-dimensional CFD model with detailed chemical kinetics

• Species-resolved measurements from flow reactor oxidation of small hydrocarbon species (C_4 and smaller) and H_2 add to the database of experimental measurements relevant to improving the fidelity of high hydrogen content (HHC) fuels and natural gas combustion predictions for gas turbine applications

• Present database considers fuels composed of H₂, CH₄, C₂H₆ (with significant C₂H₄ daughter intermediates), C₃H₆, iC₄H₈, and iC₄H₁₀. Oxidation may be in presence/absence of added trace NO_x

Modeling efforts are ongoing and are considering not only different available kinetic models, but also assumptions regarding initial conditions
Detailed and reduced model constructs will be available

Thank You

Model Elements: Proposed H₂/CO/NO_x Model

¹Burke et al., Int. J. Chem. Kinet. 44 (2012)

²Metcalfe et al., Int. J. Chem. Kinet. 45 (2013)

No HOCO chemistry considered Model Elements: Proposed H₂/CO/NO_x Model

³Skreiberg et al., Combust. Flame 136 (2004)

⁴Klippenstein et al., Combust. Flame 158 (2011)

Model Elements: Proposed H₂/CO/NO_x Model

¹Konnov et al., Combust. Flame 156 (2009)

²Rasmussen et al., Int. J. Chem. Kinet. 40 (2008)

Proposed Model Performance: Ignition Delay

Dependence of τ_{ig} on initial NO₂ doping for H₂/O₂ system

Proposed Model Performance: Ignition Delay

Dependence of τ_{ig} on initial NO₂ doping for H₂/O₂ system

Proposed Model Performance: Ignition Delay

Dependence of $\tau_{i\alpha}$ on initial NO₂ doping for H₂/O₂ system

Normalized Ignition Sensitivity Coefficient, o

Mathieu et al., Proc. Combust. Inst. 34 (2013)

Reasonable model prediction of fuel consumption and NO-NO₂ conversion

Major reaction pathways of NO-NO₂ recycling process

Mueller et al., Int. J. Chem. Kinet. 31 (1999)

 $NO \rightarrow NO_2$ conversion: through intermediate HNO_3

Reasonable model prediction of fuel consumption and NO-NO₂ conversion

Mueller et al., Int. J. Chem. Kinet. 31 (1999)

Reasonable model prediction of fuel consumption and NO-NO₂ conversion $NO \rightarrow NO_2$ conversion: through intermediate HNO_3 $NO_2 \rightarrow NO$ conversion: (*i*) direct

Mueller et al., Int. J. Chem. Kinet. 31 (1999)

Reasonable model prediction of fuel consumption and NO-NO₂ conversion $NO \rightarrow NO_2$ conversion: through intermediate HNO_3 $NO_2 \rightarrow NO$ conversion: (i) direct (ii) through intermediate HONO

Proposed Model Performance: PFR Species Evolution for CO/H₂/NO_x Oxidation System

Rasmussen et al., Int. J. Chem. Kinet. 40 (2008)

Proposed Model Performance: PFR Species Evolution for CO/H₂/NO_x Oxidation System

Rasmussen et al., Int. J. Chem. Kinet. 40 (2008)

Proposed Model Performance: PFR Species Evolution for CO/H₂/NO_x Oxidation System

Rasmussen et al., Int. J. Chem. Kinet. 40 (2008)

Effect of Physical and Chemical Perturbations on the Explosion limit and Ignition Delay Time of H_2/O_2

- ✓ Significant effects of impurities on the ignition delay time of H₂-oxidation
- ✓ The nature of variation also changes with pressure.

Effect of Physical and Chemical Perturbations on the Explosion limit and Ignition Delay Time of H_2/O_2

Chemical Perturbation- initial NO doping

Effect of Physical and Chemical Perturbations on the Explosion limit and Ignition Delay Time of H_2/O_2

Additional Small Species Database Efforts

- Recap of C₃H₆ measurements/modeling presented at last UTSR review meeting
- Propene is an important intermediate in C₃H₈ oxidation, as well as for kinetics of higher hydrocarbons fraction of natural gas
- Previous models predicted substantial reactivity at the relatively low reactivity ~800 K, 15 atm conditions shown

72

- Santner, J., Ahmed, S., Farouk, T., Dryer, F., "Computational study of NO_x formation at conditions relevant to gas turbine operation, part I" Combustion and Flame (being submitted - November).
- Ahmed, S., Santner, J., Dryer, F., Padak, B., Farouk, T., "Computational study of NO_x formations at conditions relevant to gas turbine operation part II: NO_x in high hydrogen content fuel combustion at elevated pressure" *Combustion and Flame (being submitted November)*.