Experiments and LES Modeling of Flashback in a Model Swirl Combustor

Noel Clemens *The University of Texas at Austin* **Venkat Raman** *University of Michigan*

Sponsored by DOE NETL (DE-FE0007107)

Objectives

Joint Experimental/Computational program

- Investgate boundary layer flashback in swirl combustors with hydrogen enriched fuels
- Develop improved LES models for this challenging target problem
- Use OpenFOAM platform to facilitate transfer to industry
- Conduct experiments in a newly-developed swirl combustor under varying pressure conditions
- Make high-fidelity time-resolved measurements for physics and validation

Current Presentation

- •New Experimental Results
 - Solid particle seeding to enable velocity measurements in unburnt and burnt gases
 - Tomographic PIV and flame front measurements
 - Measurements of flashback at pressures up to 5 atm
- •New LES Results
 - New models have been developed to improve prediction of turbulence in non-reacting flow and in presence of flame
 - Extensive validation with literature and UT data

Model Swirl Combustor

Model swirl combustor

High-Pressure Combustion Facility

- Designed to operate at up to 10 bar
- 8" internal diameter
- Stainless steel construction
- Allows mounting of various burners
 - Flashback
 - Stratified flames
- Optical access through sides and top
- To date we have operated it only to 5 bar

High-Pressure Combustion Facility

Measurements at 1 atm

CH₄-air flames

Flashback: CH_4 -air at $Re_h = 2000$

- High-speed chemiluminescence imaging (2 kHz)
- •Flashback along center body in swirling motion
- •Flame stabilizes on trailing edges of swirler vanes

High-speed particle image velocimetry

Simultaneous 3-component (stereo-)PIV and flame luminescence imaging

- 4 kHz framing rate
- Spatial resolution: one vector every 0.4mm
- Flame front detection based on vaporized seeding particles

BL flashback (last year's results)

Channel flow Swirling flow u^+ -4 - 3 - 2 - 1 01 2 3 4 Heeger et velocity (m/s Gruber et 60 al., EXIF, al. JFM, y^+ 40 2010 2012 20 0 20 80 100 40 60 120 140

Current work t = 29.75 ms u_z [m/s] -50 5 -55 Center body ה-60 [שם] א 3 -70 -75 10 5 15 0 r [mm]

• Is this flow reversed or separated?

PIV 1343

 Need 3D measurements

Planar PIV in unburnt and burnt gas

Planar PIV in unburnt and burnt gas

Improved data for validation

- Moderate acceleration in the axial direction in burnt gas farther downstream of flame tip
- Swirl decreases in burnt gas realignment of streamlines

Measurements at 1 atm

H₂-enriched flames

Flashback Modes (new interpretation)

- "Swirl-flow flashback"
 - Flame tongues swirl around centerbody as they propagate upstream
 - Found in both CH₄ and H₂ cases
- "Channel-flow flashback"
 - Flame cusps convex towards reactants propagate upstream in streamline direction
 - Occurs on windward side of flame tongue
 - Found in H2 and CH4 flames
 - Mechanism seems to be similar to that in non-swirling channel flow flashback

H₂/CH₄ (90% H₂ by vol.)

H₂/CH₄ (90% H₂ by vol.)

Flame Spread – Effect of Hydrogen

Matched laminar flame speeds 1 atm

3D Measurements CH₄-air Flames Pressure: 1 atm

High-speed tomographic PIV

 It is clear that fully 3D measurements of the complex flowfield would be beneficial

→ Tomographic PIV – 3D velocity in a volume

3D flame surface reconstruction

- 1. Raw images
- 2. Image preprocessing

Camera 2

Camera 3

Camera 1

3D flame surface reconstruction

- 1. Raw images
- 2. Image preprocessing
- 3. Reconstruction of 3Dparticle field
- Determining
 interrogation volumes
 occupied by flame

3D flame surface reconstruction

- We have developed a new method to reconstruct the 3D flame surface
- Uses tomographic reconstruction of aerosol particles
- Method gives flame surface + velocity field at 4kHz

Time-resolved 3D flow-flame interaction

Effect of flame on approach flow

3D displacement of streamlines

Summary of upstream flame propagation

Flashback experiments at pressures up to 5 atm

CH₄-air flashback at 1 atm and 4 atm

- Equal volume flow rate
- Increased flame wrinkling
- Less flame spread (remains closer to centerbody)

Flashback at different pressures

Maintain same average volume flow rate Average axial velocity of 2.2 m/s

Effect of pressure on flame shape

Effect of pressure mean velocity profiles

Large-Eddy Simulation Results

Swirler Flow Calculations

- LES computations in complex geometry
- Maintaining turbulent flow structures is nontrivial
 - Discrete kinetic energy conservation needed
- OpenFOAM collocated minimal dissipation solver
 - Developed at UM
 - Available as part of UM gas turbine simulation package

Radial velocity in bluff body jet **with** kinetic

Radial velocity in bluff body jet without kinetic

energy conservation energy conservation

Swirler Computations

- Swirl vanes are sources of unsteady vortex shedding
 - Capturing these structures is critical

Non-reacting Flow Statistics

Mean/Azimuthal Axial Velocity

RMS Axial Velocity (grid convergence)

- Mean velocity insensitive to grid size
 - RMS velocities require much higher resolution to capture vane-generated turbulence
 - Similar results at all axial positions

Reacting flow simulations

- Filtered-tabulated chemistry model
 - Wrinkling factor added to model sub-grid flame structure
- Filter size of 0.5 mm
- Grid size from 0.4 to 1 mm
 - Note that filter size is enforced using a filtered chemistry model
- This approach provides a natural transition to stratified flames

FLAMELET SOURCE TERM

Stable flame configurations

- Blockage effect induced by the flame creates upstream reverse flow pockets
- The effect is enhanced at high pressure

4 ATM/CH4

1 ATM/CH4

Flame front U axial [m/s] 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.

Flame topology during flashback

- Flame front more uniform in azimuthal direction
- Flame tongue appears only when flashback is triggered
- Both observations differ from experimental data

FLAME SURFACE

ISOCONTOUR OF EQUIVALENCE RATIO

Flame Laminarization

- LES solvers based on low Mach number approximation
 - Necessary for accelerated calculations in low speed flows
- Flame propagation affects upstream turbulence more significantly than experiments
 - Low Mach number solver seems to spread out pressure disturbances over entire domain
- Are basic flow assumptions not valid in unsteady confined flame motions?

Program Outcomes

- New 1-atm and high-pressure swirl-flame facilities have been constructed to enable study of flashback at a range of pressures
- Extensive measurements have been made of boundary layer flashback with varying
 - Reynolds number
 - Fuel composition (CH₄+H₂)
 - Pressure (1 to 5 atm)
- Used high-speed PIV and 3D flame surface imaging
- Measurements have provided new physical insight and proved valuable for LES model validation

Program Outcomes

- Developed a new flamelet approach for premixed flames with wall quenching
 - Targeted for boundary layer flashback
 - Validated using DNS data and experimental measurements
- Developed a minimally dissipative collocated numerical scheme for unstructured grids
 - Implemented and verified in OpenFOAM open source package
 - Adapted for industrial use, and validated in complex geometry test cases
- Identified potential shortcomings
 - Low Ma assumption may not produce flashback flame structure
 - Pressure effects might be transient in nature

END