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Hot section coatings having been critical enablers in recent years

These are complex Dynamically Evolving Structures

Photo Courtesy – Dr. Ramesh Subramanian, Siemens



Sanjay Sampath, Stony Brook University
Presentation at NIMS, April 2015

TBC Manufacturing Technologies

Plasma Sprayed TBCs

EBPVD TBCs

(a) (b)

SPS TBCs

PSPVD TBCs
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LPPS APS SPS High Through-put APS

Liquid Fuel HVOF Gas Fuel HVOF VPS

Thermal spray manufacturing variants
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Evolution of TBC Materials and Thermal Spray Manufacturing
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Feedstock
Characteristics

Process
Variables

Component 
Performance

Coating
Structure

Spray Stream
Characteristics

Substrate 
Conditions

Coating 
Property

Deposition 
Conditions

- Equipment related 

(Gun, Gases, Power)
- Particle Injection

- Feed rate
- Raster / Rotation Rate
- Angle of Deposition

- Chemistry
- Adsorbates
- Temperature
- Roughness

- Plume Orientation
- Plume Spread
- Particle State

- Structural 
Adhesion, Residual Stress, 
Toughness, Stiffness, Elastic Modulus

- Functional
Electrical / Thermal transport,
Wear / Erosion / Corrosion Resistance

- Defect (Cracks & Pores)
- Crystal (Phase & Composition)
- Layering (Splat Characteristics)
- Grain (Size)
- Anisotropy

- Composition
- Morphology
- Size Distribution

APS TBC fabrication involves numerous variables

Plasma Spray Grey 
box

Multitude of spray devices

& parameters

Multitude of evaluation

Criteria and variants

Multitude of applicators

locations

Implications

Extreme variability – local and global

Infant mortality and poor reliability

Difficult to incorporate into life models
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Requires ….
- Robust scientific understanding of manufacturing process
- Effective tool to assess coating quality and process/coating reliability 
(both from development and manufacturing point of view)

Quality

# 
of
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oa

tin
gs

Traditional Role of TBC ⇒ Life Extension

Extra protection on substrates

Higher operating 
temperature

German Aerospace Center
Institute of Materials Research

Wu et al, NIMS, Japan

Coating Failures

Future Role of TBC ⇒ Prime Reliant

Must protect (super-alloy) substrates

Requires better control of quality variability

TBC Processing Reliability/Quality is becoming increasingly important



Plasma spray is a highly complex deposition process:
Materials Synthesized from Extreme Conditions

NON-EQUILIBRIUM PROCESSING
Ultra rapid heating and phase change
Rapid cooling and solidification
Impact pressure induced transformations

MULTI-SCALE STRUCTURE AND PROPERTIES
Nano-, micro-, meso- and macro-scales
Defect-dominated attributes

HIGHLY ANISOTROPIC BEHAVIOR
Process-induced residual stresses 
Anisotropic properties across length scales
Non-linear elastic behavior
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Non-linear response ceramics Anisotropy

Impact induced changes

Multiscale microstructures

Microsecond time scales

Need to develop interdisciplinary 
Processing/Manufacturing Science
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Linking Research to Practice

Center for Thermal Spray Research at Stony Brook University

Established as an NSF MRSEC in 1996
Integrated Interdisciplinary
Research Aimed at Advancing
Science, Technology and Outreach 
for Thermal Spray Technology
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formation 
dynamics
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microstructural 
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Loading
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A typical 
Ceramic

Tools, Technologies and Models are now available at each step

Industry has started to adopt these capabilities for manufacturing control,

Enhanced new processes, novel designs, models and applications 
Article in Integrating Materials and Manufacturing Innovation

PAINT: Partnership for Accelerated Insertion of New Technology:

Case Study for Thermal Spray

http://www.immijournal.com/content/pdf/2193-9772-2-1.pdf
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A large portfolio of scientific information has been developed 
manufacturing science of TBCs

1999- Present
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Demonstrated Industrial Benefits of Advanced Manufacturing Science through Joint 
Experiments:  32 Field Trips in the Last 7 Years

Stony Brook-Caterpillar Team

Volvo Sweden Field Trip

Post-docs and students facilitate 
effective knowledge transfer to 
industrial workforce through 
cooperative experimentation 
using advanced technologies and 
scientific methodologies 
developed in academia. 

Simultaneously, they benefit from 
the industrial insight and 
priorities

Companies involved in 
field trips

http://www.cat.com/
http://www.cat.com/
http://www.praxair.com/praxair.nsf
http://www.praxair.com/praxair.nsf
http://www.sulzer.com/en/DesktopDefault.aspx/tabid-94/
http://www.sulzer.com/en/DesktopDefault.aspx/tabid-94/
http://www.alstom.com/
http://www.alstom.com/
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Advanced science impacts both efficiency and reliability

E

σ

ε

σT

ε∗

σ∗

ε* = σ*/E + σ*n/EσN
n-1

ε*= σ*/E
LINEAR

NONLINEAR

E

σ

ε

σT

σ

ε

σT

ε∗

σ∗

ε* = σ*/E + σ*n/EσN
n-1

ε*= σ*/E
LINEAR

NONLINEAR

Observations of novel phenomena in 
thermal plasmas (injection sweet spot)

Proof of Concept Demo
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process efficiency
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Fundamental Science
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Observations and quantification of non-
linear properties of ceramic coatings

Observation

Successful testing of 
hypothesis in field: 
Tinker AF Base & 
Plasma Technology Inc.

In situ & ex situ extraction 
of non-linear properties

In situ process diagnostics

OUTCOME:

Procedures for simultaneously 
enhancing process efficiencies 

and reliability
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The Past and Future

Industrial perception of APS manufacturing as a constraint
- Lack of understanding of the scientific nuances

- Perception of poor Repeatability, Reproducibility and Reliability

- In effective control and metrology tools

- Lack of integrated understanding

- Disconnect between design, materials and processes

=>   Implication: Manufacturing is a “burden”  

With advanced science manufacturing can be an enabler
- Implemention of Segmented or Dense Vertically Cracked Coatings 

- (Directionally solidified, in-plane compliant coatings)

- Understanding the importance of toughness of metastable t” YSZ on durability

- Advanced process control through insitu sensor based feedback

- Predictive microstructures through maps, correlations and models

- Process-property guided layered engineering 
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Thermal spray as an additive and layered 
manufacturing technology

Bring Manufacturing Science and Novel Capabilities 

to Expand Design and Materials Options



Sanjay Sampath, Stony Brook University
Presentation at NIMS, April 2015

Ni based Superalloy Substrate
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Oxidation protection
strength/creep resistant

High fracture toughness layer

Sinter Resistant 
Low Thermal conductivity

Erosion and CMAS Resistant
Low thermal conductivity

Phase stability

Teixeira et al., JTST, 9(2), 2000—191

Padture et al., vol. 296,Science, 280, 2002

E.g.  Optimal Layer Design for Improved Durability 

Critical microstructural parameters

- Intrinsic Material Toughness

- Manufactured Material Toughness
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Superalloy Substrate

Overlay BC

Porous YSZ
Low K

Low E

Conventional TBCs
Enhanced Durability 

TBCs

Superalloy Substrate

Overlay BC
enhanced 
roughness

Layer-1
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High KIC TBC Layer

Porous YSZ
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Toughness engineered multilayer TBCs
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Coatings experience multiple failure mechanisms 

o Ceramic strength/toughness
o Ceramic coating compliance 

and ceramic chemistry

o Bond coat chemistry, Roughness
o Ceramic coating toughness

o Ceramic coating composition

o Coating density o Coating porosity/cracks

o Bond coat roughness
o Coating thickness

o Pore architecture
o Coating thickness
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Multilayered architecture to combat multifunctional requirements

(Rene 80 or CMSX4)

Plasma spray is naturally suited for such layered manufacturing
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Superalloy Substrate

High KIC YSZ Layer

Erosion ,CMAS Resistant
Low K ,E GZO Layer

Multifunctional 
Multimaterial TBCs

Bond Coat
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Design consideration for YSZ- GDZ multilayer architectures

Possible Microstructural Variants 

Porous YSZ / Porous GDZ

Dense GDZ / DVC GDZ

DVC / Thin interfacial layer of 
dense YSZ
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Single Layer TBC

600 hrs

 50 +coating conditions

 40+ architectures

 600+ FCT samples

 Adequate erosion 
resistance

 Significantly higher 
durability

 CMAS resistance

 Mechanisms  and 
Methodology to 
incorporate andy
new composition

The multilayer TBC architecture

Layer-2

Layer-1

Layer-3

1,200 hrs

Multilayer TBC

Validated through FCT testing both in house, ORNL and industry 
(Siemens, GE) during UTSR program
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Successfully validated at industrial sites  (GE, Siemens, Praxair)

Bond Coat

Porous 
Single 
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YSZ-GDZ 
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Porous YSZ Dense YSZ Bi layer YSZ YSZ-GDZ

All failed at BC/TC interface

FCT: 2000F (1093oC), 45 mins cycling
Courtesy: Ben Nagaraj

6 x 2000 cycles: 
No Failure yet
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JETS test

Courtesy: Dr. Li Li

J. Mater. Engg. Perf.Ann Bolcavage

http://link.springer.com/journal/11665
http://link.springer.com/search?facet-creator=%22Ann+Bolcavage%22
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Superalloy

Bondcoat

Topcoat
EBPVD
APS
SPS

Ni/Pt-Al
APS
VPS
HVOF

Increasing Turbine operation TemperatureY:1980 Y:2015

Ni based- Bond Coat

Conventional single 
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Multilayer 
Advanced TBC
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Applying similar ideas to emergent TBCs, EBCs, T/EBCs
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MesoPlasma™ 3D-Printing Technology

Printing onto Films

 Provides new process capabilities not achieved 
with conventional plasma spray / cold spray

 Precision, multi-layered 
metallic and ceramic dielectric 
patterns

 Printed thermocouples and 
high watt density heaters onto 
parts 

 Stand-alone heat flux sensor 
and heater products

 Printed patterns onto 
temperature-sensitive polymer 
films

Direct Write Technology

Temperature Sensing

Part Heating

Heat Flux Sensor Products
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