High Inlet Temperature Combustor for Direct Fired Supercritical Oxy-Combustion

2015 University Turbine Systems Research Workshop November 3, 2015

Aaron McClung, Ph.D. Jacob Delimont, Ph.D. Shane Coogan

Lalit Chordia, Ph.D. Marc Portnoff

11/3/2015

Southwest Research Institute

Thar Energy L.L.C.

Work supported by US DOE under DE-FE002401

2015 University Turbine Systems Research Workshop

1

Outline

- Project Overview
 - Project Objectives
 - sCO2 Background
 - Technical Challenges
- Selected Progress Update
 - Cycle Evaluation
 - Kinetic Models
 - Supercritical Oxy-Combustor Design

PROJECT OVERVIEW

11/3/2015

2015 University Turbine Systems Research Workshop

3

Project Objectives

• Optimize the supercritical CO2 power cycle for direct fired oxy-combustion

- Target plant conversion efficiency is 52% (LHV)

- Technology gap assessment for direct fired plant configurations
- Develop a high inlet temperature oxycombustor suitable for the optimized cycle

Target fuels are Natural Gas and Syngas

What is a sCO2 cycle?

- Closed Brayton Cycle – Working fluid is CO2
- Cycle Type
 - Vapor phase
 - Transcritical
 - Supercritical
- Supercritical CO2 has:
 - High fluid density
 - High heat capacity
 - Low viscosity

11/3/2015

Why sCO2 Power Cycles?

- Offer +3 to +5 percentage points over supercritical steam for indirect coal fired applications
- High fluid densities lead to compact turbomachinery
- Efficient cycles require significant recuperation

11/3/2015

• Compatible with dry cooling techniques

Third Generation 300 MWe S-CO2 Layout from Gibba, Hejzlar, and Driscoll, MIT-GFR-037, 2006

Why Oxy-Combustion?

- High efficiency cycles are highly recuperated
 - Unique thermal integration challenges
- Direct fired configurations remove at least two heat exchangers
- Supercritical oxy-combustion is well suited for integrated CCS

11/3/2015

7

Flavors of Oxy-Combustion

- Flue Gas Recirculation
 - Combustion at near ambient pressures
 - Recycled flue gas is mixed with incoming air
 - Increases flame temperatures
 - Increases CO2 concentration for CCS
- Pressurized Oxy-combustion
 - Combustion at elevated pressure (~ 10 bar)
 - Latent heat is recoverable and heat transfer rates are increased
 - Minimizes air in-leakage
- Supercritical Oxy-combustion
 - Combustion occurs at supercritical pressures (>74 bar)
 - Required for direct fired sCO2 cycles, compatible with indirect cycles
 - CO2 acts as a solvent in dense phase, accelerating certain reactions
 - Compression requirements drive closed combustion solutions
 - Flue gas cleanup and de-watering at pressure may be challenging

Progression

- System Design and Thermodynamic Analysis
 - Evaluate cycles to determine combustor design parameters
- System level Technology Gap Assessment
- Kinetics Models
 - Evaluate kinetic models to determine applicability
 - Initial kinetic evaluation at combustor inlet conditions
- Combustor Concept
 - Material constraints at 1000 C 200 bar inlet, 1200 C 200 bar outlet conditions
- Combustor demonstration

9

SYSTEM ENGINEERING DESIGN AND THERMODYNAMIC ANALYSIS

11/3/2015

Oxy-Combustion Plant Model

11/3/2015

Direct Fired Supercritical Oxy-Combustion

- Plant evaluation factors power cycle layout, environmental conditions, component performance, and secondary systems
- Plant optimization focused on thermal efficiency
 - Target 52% plant efficiency to compete with NGCC
 - Drives 64% power cycle thermal efficiency
 - Turbine inlet near 1200°C

Representative Cycle Efficiencies

Workshop

13

Partial Condensation and Recompression Cycles

Temperature (C)

11/3/2015

2015 University Turbine Systems Research Workshop

14

Cycle Comparison

	Single	Single	Recompression	Recompression
	Recuperator	Recuperator		
	Condensation	Condensation		
Net fuel to bus bar plant	54.03%	51.60%	56.73%	53.44%
efficiency				
Total Recouperation (kW)	989.91	1078.16	1163.44	1205.34
HE Duty per Net Power	2.48	3.21	4.34	6.55
Ratio (kW/kW)				
Power per Mass Flow Ratio	399.06	335.38	268.08	183.92
(kJ/kg)				
Combustor Inlet Temp. (°C)	755.18	808.60	918.16	994.37
Combustor Inlet Pres. (bar)	300.00	200.00	300.00	200.00
** Cycles evaluated at 1200°C Turbine Inlet Temperature and unit 1 kg/s mass flow				

Cycle Analysis Results

- Recompression cycle has highest efficiency by 1.8% at 200 bar, 2.7% at 300 bar
- Condensation cycle is superior in all other metrics
 - Reduced recuperation (~ 50%)
 - Lower combustor inlet temperature
 - Higher power density (power output / flow rate)
- Both cycle configurations are compatible with an *auto-ignition* style combustor for 1200 C Turbine inlet temperatures.

COMBUSTION KINETICS

11/3/2015

fully coupled if needed.

11/3/2015

Kinetic Model: Motivation

- The fundamental size of the combustor is governed by the timescale of chemical reactions
- The chemical reaction kinetics determine how fast fuel oxidation occurs
 - A detailed chemical kinetic model is required to size the combustor
 - A reduced chemical kinetic model is required for detailed flow-field design in CFD

11/3/2015

Chemical Mechanisms

Sample Methane Oxidation Mechanisms for Same Overall Reaction

 $\begin{array}{l} \underline{ Species: 4 \ Reactions: 1} \\ \mathrm{CH}_4 + 2 \ \mathrm{O}_2 \rightarrow 2 \ \mathrm{H}_2 \mathrm{O} + \mathrm{CO}_2 \end{array} \quad r = AT^n e^{-\frac{E_a}{RT}} [CH_4]^a [O_2]^b \end{array}$

- A set of species, chemical equations, and reaction rate equations is called a <u>mechanism</u>
 - Reaction rate is a function of temperature and reactant concentrations
- Actual hydrocarbon combustion is complex process involving a multitude of intermediate reactions and species
 - Modeling the complete process is not practical
 - Mechanisms in the literature are approximations that use a subset of species and reactions
 - Adding species and reactions improves predictions and provides more information, but with non-linear increase to computational cost

No data available at conditions relevant to this application.

11/3/2015

Modeling Strategy

- No available kinetic model is validated for this application •
 - Forced to use extrapolation
- Select a set of detailed models that are validated for low pressure and low CO_2 • concentration
 - Other mechanism criteria
 - > 10^2 reactions: More detailed models may have better extrapolation capability
 - < 10³ reactions: Too large of a mechanism will be impractical to validate and execute in design studies
 - Mechanisms evaluated

Mechanism	Species Count	Reaction Count
GRI-Mech 3.0 [1]	53	325
USC-II [2]	112	784
San Diego 2014-10-04 [3]	50	247

- Compare model predictions at validated conditions
 - Autoignition, flame speed, and residual CO
- Compare model results at supercritical oxyfuel combustor conditions
- Select best performer for use in this project with appropriate uncertainty range ٠
- Cantera 2.1.2 is used as the modeling environment

Chemical Kinetic Model Performance Summary

- High pressure in air
 - Autoignition
 - Mechanisms generally perform similarly
 - Performance is similar to that at low pressure
 - GRI 3.0 has an advantage when predicting peak [OH] concentration
 - USC-II is most accurate at the conditions relevant to the supercritical oxyfuel combustor concept
 - Flamespeed:
 - USC-II is most accurate at 60 atm and consistently runs between 10% and 20% average error
 - Other mechanisms are very accurate at pressures up to 40 atm but have error around 40% at 60 atm
- Low pressure in CO₂
 - Flamespeed
 - GRI 3.0 and USC-II both perform well
 - [CO] in an isothermal reactor
 - SD-2014 is best but USC-II is also acceptable
- In general, high pressure appears to be a greater extrapolation risk than high CO₂

Comparison of Predictions at Supercritical Oxyfuel Conditions

Workshop

Comparison of Predictions at Supercritical Oxyfuel Conditions

11/3/2015

Mechanism Selection

- Primary selection criterion is accurate prediction of the overall reaction time scales
 - Drives the combustor design
 - More important than other details such as peak concentration values
- USC-II is the clear choice based on this criterion
 - Most accurate in highest pressure flamespeed and autoignition validation comparisons
- USC-II also had good to adequate performance in low pressure CO₂ studies
- USC-II predictions should carry +/- 50% uncertainty in this application

11/3/2015

Reduced Order Model

- For incorporation into a CFD model a reduced order model was developed
- Equations based on Arrhenius rate equation were tuned to match USC-II model predictions
 - Match autoignition delay
 - Match residual CO levels

11/3/2015

- Overall time to complete reaction

fully coupled if needed.

11/3/2015

COMBUSTOR DEVELOPMENT

11/3/2015

Operating Requirements

- Combustor inlet conditions
 - 200 to 300 bar
 - 750 to 1000 C

11/3/2015

- Natural Gas or Syngas with CO2 diluent
 - Not concerned about NOx

Auto Ignition Flame Stabilization

- Conventional low temperature combustors require submerged components
 - Fuel/air pre-mixing
 - Flame stabilization
- Requirements do not apply to high inlet temperature oxy-combustors
 - NOx emissions are not a concern
 - Inlet temperature above the fuel's autoignition temperature
- Autoignition can be used to stabilize the flame without submerged components
 - Fuel/O2 will spontaneously ignite after a short delay time
 - No recirculation zones are required
- Additional research is needed to verify autoignition properties at high pressure with CO2 diluent

11/3/2015

Based on correlation from [1]

References

1. L. J. Spadacinni and M. B. Colket, "Ignition Delay Characteristics of Methane Fuels," *Progress in Energy and Combustion Science*, Vol. 20 No. 5, pp. 431-460, 1994.

Mixing Theory

- Fuel and oxidizer must thoroughly mix
 - Homogenous output condition
- The tee mixer, or jet-in-crossflow (JICF) is a simple, highly effective, and welldocumented mixing device without submerged parts
 - Counter-rotating vortex pair entrains fluid
- Flow physics for JICF is complicated by turbulent structures
 - Steady RANS was used for modeling
 - Known deficiency in modeling the unsteady behavior

<u>References</u>

- 1. Kelso, et al. "An experimental study of round jets in cross-flow," J. Fluid Mech, vol. 306, 111-144, 1996.
- "Jet Injection for Optimum Pipeline Mixing," Encyclopedia of Fluid Mechanics, vol. 2, Ch. 25, Gulf Publishing, 1986.

11/3/2015

Counter-rotating vortex pair

Initial Combustor Concept

11/3/2015

CFD Geometries

- CFD simulation using reduced reaction mechanism
 - Explore injector hole location, velocity, and size
 - Thermal conditions inside the combust
 - Instrumentation placement

Injector Hole Sizing

- Injector hole sizing dictated by momentum of fluid being injected
- Fuel flow and density dictates a much smaller hole that Oxygen
- Keeps combustion zone in center of combustor

11/3/2015

	Fuel	Oxygen
2-Hole Diameter (inch)	0.055	0.15
4-Hole Diameter (inch)	0.027	0.075

Sample Result: 45° Clocked

- Four fuel, four oxygen injectors, 45° angle between ports
- High max temperature
 - Highest temperature are located away from the walls
- Rapid combustion, relatively good mixing

11/3/2015

Sample Result: 11.25° Clocked

- Four fuel, four oxygen injectors, 11.25° angle between ports
- Very high max temperature, which is in contact with walls

11/3/2015

Refined Design: Fuel Injection 24in Upstream

- Fuel well mixed throughout combustor before oxygen
- Allows hydrocarbon "cracking" before oxygen injection
- Cool max temperatures

11/3/2015

- Very good mixing at outlet
- Very low unburnt fuel percentage

Refined Design Concept

Instrumentation

11/3/2015

40

WRAPUP

11/3/2015

Status Summary

- Program Objectives
 - Advance fossil based sCO2 power cycles
 - Reduce technical risk for direct fired oxy-combustion
- Progress to Date
 - System Design and Thermodynamic Analysis
 - Kinetic Models
 - Bench Scale Testing
 - Auto-ignition based Combustor Design
- Moving Forward

11/3/2015

- Additional Combustor Concepts
- Phase II Demonstration Concept

QUESTIONS?

11/3/2015

Component Specifications

Component	Specifications
Compressor	Polytropic η: 0.85, Mechanical η: 0.95
Isothermal Compressor	3 stage Isothermal Compressor, T Ratio: +5°C/stage
Refrigeration	% Carnot: 0.45, Ambient Temp: 15°C
Cryo-Pump	Pump η: 0.55, Mechanical η: 0.95
CO2 Pump (Non Cryo)	Pump η: 0.75, Mechanical η: 0.95
Heat Exchanger	Pinch ΔT: 10°C, ΔP: -1 bar
CH4 Delivery Compressor	Polytropic η: 0.85, Mechanical η: 0.98
O2 Pump	Pump η: 0.55, Mechanical η: 0.94
ASU	ASU ~300 kW-hr/ton if Liquid, ~250 kW-hr/ton if gas
Turbine	Isentropic η: 0.92, Mechanical η: .99
Pipe Line CO2 Compressor	Polytropic η: 0.85, Mechanical η: .98
Cooling Tower	Cooling tower: 0.06 kW/Ton, Minimum Temp: 20°C
Water Chiller	Cooling: 0.6kW/Ton

