

Combined Cycle Power Generation Employing Pressure Gain Combustion

2015 University Turbine Systems Research Workshop November 3rd, 2015

Adam Holley (PI), James Donohue (PJL), Chris Greene, Ray-Sing Lin, Xiodan Cai, Steven Zeppieri, Justin Locke, Vaidya Sankaran, Jerry Lee, Andrew Dasinger

This material is based upon work supported by the Department of Energy under Award Number DE-FE0024011.

Background

Vast prior data provide validation/realism to current program performance predictions

- Program Objective: to assess the potential benefit of applying pressure gain combustion (PGC) technology to large scale combined cycle power generation
- DOE's preliminary estimate is a 1-3% benefit for the combined cycle application
- UTC has a long history of PGC research which includes the DARPA Vulcan program
- This wealth of existing experimental data, analytical capabilities, and experience will be leveraged to facilitate this program
- This analysis focused on the pulse detonation engine (PDE) as the PGC due to the higher TRL

Thermodynamic Benefit

PGC is fundamentally more efficient than standard combustor technology

- Definition of Pressure Gain Combustion (PGC)
 - A periodic combustion process whereby the effective total pressure of the exit flow, on an appropriately assessed basis, is above that of the inlet flow.
- Less entropy is generated during heat release resulting in a more efficient process (shown below comparing constant volume combustion (CVC) to constant pressure)

Gas Turbine PGC Integration Challenges

Integrating an unsteady combustor into steady rotating machinery poses unique challenges

- Previous analysis has shown that the compressor integration is trivial for a PDE based system provided it has a high performance air valve
- The most difficult integration challenge is between the unsteady combustor and the steady turbine
 - Our approach introduces an attenuation device between the two components to condition the flow prior to entering the turbine
- For all PGC systems, the fundamental issue of the adverse pressure gradient must be addressed
 United Technologies

Research Center

Gas Turbine System Model

Detailed system model was created in a proven performance evaluation tool

United Technologies Research Center

PGC Combustor Representation

Simplified PGC representation implemented in NPSS

- For the system cycle model, a simple PGC representation is required
- A model based on the method documented in Ward et.al. was implemented
- It utilizes a two step calculation to determine the partially relaxed state

United Technologies Research Center 50th AIAA Aerospace Sciences Meeting, AIAA 2012-0772 This page contains no technical data subject to the EAR or the ITAR.

Non-Ideal PGC Combustor Representation

Practical PGCs are not perfect constant volume combustors

- The previous PGC representation was that of a perfect constant volume combustor
- A modified version of the same framework was implemented to retain the correct PGC physics with tunable parameters
- The tunable parameters allow for the PGC model to be calibrated to experimental data or analytical results for a specific design
 - Non-ideal version implemented into system model PGC module

$$\Delta w_{piston} = v \left[(1 + \Delta v) P_{2'} - P_2 \right] \quad \Longleftrightarrow \quad \text{Non-constant volume}$$

$$\eta_{comb_eff} q = u_{2'} - u_2$$

$$= h_{2'} - h_2 - v \left[(1 + \Delta v) P_{2'} - P_2 \right] \quad \Longleftrightarrow \quad \text{Incomplete heat release}$$

$$\Delta w_{int_turbine} = h_{2''} - h_{2'}$$

$$= \eta_{int_turbine} (h_{2''_{ideal}} - h_{2'}) \quad \Longleftrightarrow \quad \text{Non-ideal blowdown process}$$

Component Performance Update

- Completed component performance update and NPSS model calibration
- All component performances were derived from a wealth of existing data
- High level methodology was:
 - Extract relevant existing data from prior work
 - Evaluate the methods used to obtain the data
 - If necessary, perform additional analysis to update performance estimate
 - Calibrate NPSS modules based on existing data
 - Evaluate how the DOE design will modify the component performance
 - Estimate range of component performance

Component Losses								
Air Valve Pressure Loss	2.41%	Bypass Pressure Loss	1.86%					
DDT Pressure Loss	2.67%	Ejector Efficiency	53.62%					
PGC Volume Expansion	10.84%	Mixer Pressure Loss	8.36%					
PGC Combustion Efficiency	99.90%	Attenuator Pressure Loss	5.60%					
PGC Internal Turbine Efficiency	96.50%	Turbine First Blade Efficiency Decriment	0.65%					

Gas Turbine Performance

PGC gas turbine is more efficient and produces more power than the baseline system

- Baseline and PGC system have the same mass flows and compressor
- All system changes applied to the combustor and turbine

	Units	Baseline	PGC	
P3 (Compressor Exit)	psia	335	335	Same Compression
T3 (Compressor Exit)	F	866	866	Initial Pressure Gain
Total Cooling Air Flow Rate	lbm/s	242	112	→ ~1.5x
Combustor Exit Pressure	psia	318	507	
Combustor Exit Temperature	F	3045	3687	and-at. Higher Pressures
Ejector Efficiency	NA	-	53.6	AtteReatoraticutal 20 dates
Net Attenuator Pressure Loss %	%	-	14.5	to Condition/atme Flow
P4.1 (Turbine First Blade Row Inlet)	psia	307.0	385.5	Final Exit State is Same
T4.1 (Turbine First Blade Row Inlet)	F	2727	2729	
High Turbine Inlet Guide Vane Pressure Loss	%	3.5	-	Residual Unsteadiness
Turbine First Stage Adiabatic Efficiency Decrement	NA	-	0.65	→ Results in Turbine
T9 (Engine Exit)	F	1200.5	1126.1	
Parasitic Power Losses	kW	-	3495	are Required to Operate
Electrical Generator Power	kW	344,916	371,778	
Gas Turbine Efficiency	NA	44.00	47.42	
Percent Power Increase	%	NA	7.79	More Power

PGC NOx Production

"Time at temperature" notion for NOx production valid for conventional combustor, but not for PDE

United Technologies Research Center

Steam Cycle Impact

Changes in the gas turbine performance were propagated to the steam cycle

- PGC technology doesn't inherently impact the steam cycle of the power plant
- Consequently, this program focused on the gas turbine and a simple approach was taken to assess its impact on the steam cycle
- Only change to the steam cycle was the input heat
- HRSG exit state was held constant
- Steam cycle efficiency was either held constant or a small reduction can be introduced
- With these two assumptions the power produced by the steam cycle can be calculated

$$Q_{H_{steam}} = Q_{a_exit_Turbine} - Q_{a_exit_HRSG}$$

 $Q_a exit_{HRSG} = Constant$

$$\eta_{steam_PGC} = \eta_{steam} - delta$$

$$\eta_{steam} = 1 - \frac{Q_{L_{steam}}}{Q_{H_{steam}}}$$

$$Power_{steam} = Q_{H_{steam}} - Q_{L_{steam}}$$

Power Plant Performance

PGC based combined cycle power plant is significantly more efficient

 A portion of the performance gains in the gas turbine are offset by the steam cycle

					PGC System		
			PGC System	Steam Cycle	Mod. (Hold	PGC System	
		Standard	(Maintain P3,	Efficeincy	P4, Fuel	Mod. (Hold	
Gas Turbine	units	Baseline	Т3)	Impact	Flow)	P4, H4)	
Exit Specific Enthalpy	kJ/lbm	449.3	427.3	→ 427.3	438.2	451.5	
Gas Electrical Power Produced	kW	344916	371778	371778 _	357080_	373168	
Gas Turbine Efficiency		44.00%	47.42%	47.42% EX		racuond the	Gas
Percent Change in Gas Turbine Power			7.79%	7. 7 9% _	bing Reduc	es Ayaijable	
Steam Cycle				En	ergy to the S	team Cycle	
Total Gas Tubine Exit Q	kW	1219932	1160053	→ 116 0053	1189911	1225917	
Heat Flux at Exit of HRSG	kW	451972	451972	451972	451972	451972	
Qh Steam Cycle	kW	767960	708081	708081	737939	773944	
QI Steam Cycle	kW	447005	412151	4 <u>19232</u>	$+ = \frac{429531}{1000000}$	450488	Due to
Steam Cycle Efficiency		41.79%	41.79%	→ 40,79%	41.79%	41.79%	
Steam Cycle Electrical Power	kW	298123	274877	268300	286468	300446	d in
Percent Change in Steam Cycle Power			-7.80%	→-10.00%	111 Less FOW -3.91%		
Power Plant							r h
Net Power	kW	981987	1011187	→1004248		1040941	гбу
Net Efficiency		62.63%	64.49%	64.05%		-63.59%	
Change in Efficiency			1.86%				iu
Percent Change in Power			2.97%	2.27%		6.00%	

Range of Performance Estimate

Research Center

Full range of performance estimate show a benefit over the standard system

- To estimate the range of possible outcomes a Monte-Carlo method was employed for all PGC specific performance parameters
- Normal and skewed distributions were used depending on the specific parameter

Technical Conclusions

Performance assessment of PGC technology has been completed

- Approximately ~2% increase in the power plant efficiency is predicted
- Approximately ~3% increase in total power plant power is also predicted (equates to a ~3% reduction in CO₂ production)
- This analysis was for a PDE based system, but a similar result would be expected for any detonative PGC (RDEs) if similar component performances can be achieved
- Other gas turbine improvement technologies would compound with the benefits of PGC technology
- The NOx produced by a PGC system is significantly higher than that of standard combustors
- Program still working to complete technology maturation plan, commercialization assessment, and final documentation

Questions?

Disclaimer:

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views an opinions of authors expressed herein do no necessarily state or reflect those of the United States Government or any agency thereof.

