

Rotating Detonation Combustion for Gas Turbines – Modeling and System Synthesis to Exceed 65% Efficiency Goal

DE-FE0023983

Edward D. Lynch Fellow – Combustion CFD Scott Claflin Director – Power Innovations

Jeffrey Stout Project Engineer – Combustion Devices

2015 University Turbine Systems Research Workshop November 3 - 5, 2015 Atlanta, Georgia

To advance combustion turbine technologies for combined cycle applications...

...by integrating a Rotating Detonation Engine (RDE), pressure gain combustion system with an air-breathing power-generating turbine system to achieve a combined cycle efficiency equal to or greater than 65%.

- 1. Develop a **power plant mass and energy balance system model** integrating an RDE with a gas turbine-based power generation system.
- 2. Define the RDE and the interaction of the RDE with the pieces of the gas turbine system through **component models** encapsulating the operation of these components with real, as opposed to ideal, performance in succinct fashion.
- 3. Determine the efficiencies defined in these component models through unsteady, multidimensional, Computational Fluid Dynamics (CFD).
- 4. Validate the CFD models feeding this system model with in-streamprobe pressure and flow angle measurements of an RDE operating under conditions traceable to gas turbine operation.
- 5. Employ this system model based on realistic performance for **product system trades** to define the path to an advanced combustion turbine in a combined cycle application capable of meeting or exceeding 65% combined cycle efficiency.

Program Schedule

		FY 2015											FY 2016						
Task		CY 2014				CY 2015									CY 2016				
		ост	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	JAN	FEB	MAR
Program Management																			
Systems Requirements Definition					-					-									
PGC Thermodynamic Model																			
CFD Model Development																			
Validation Hardware																			
Hot Fire Testing																			
Full Scale Design Study																			
Phase II Program Planning																			

- Interdependencies require working systems, modeling, analysis and test in parallel
- Testing has been completed

Rotating Detonation Combustion for Gas Turbines – Modeling and System Synthesis to Exceed 65% Efficiency Goal (Aerojet Rocketdyne, DE-FE0023983)

Task 3: Fortran model of rotating detonation combustor subsystem developed for inclusion into Aspen plant model.

AEROJET

ROCKETDYN

Task 4: CFD used to explore alternatives for managing rotating detonation flow field from discharge of compressor to turbine inlet. Results reflected in efficiencies used in Fortran model.

Task 3.0 – Thermal Models of Pressure Gain Combustion Components and Plant Systems

RDE Combined Cycle Power Plant

RDE Model For Integration Into Plant System Model (Aspen)

1) Compressor

AEROJET

J class

2) RDE Combustor Tap-off

No loss

3) Isolator

Friction

Heat loss

Shock isolation (cfd)

2) - 3) Compressor pressure pulse interaction

No loss

4) RDE Combustor

Constant volume

Deflagration bypass

5) Combustor Exit Choke

6) Ejector

Shock primary to subsonic at Mach X

Stream thrust averaged mixing

7) Bypass Duct

8) Turbine

J class

Baseline Assumptions for Plant Model

- Turbine
 - Inlet Temperature 2,950 F, Pressure 350 psi

90% Combustion Efficiency (10% of fuel does not combust)

Natural Gas Fuel (93.1% CH₄, 4.3% C₂H₆, 1.6% N₂, 1% CO₂)

- Isentropic Efficiency 87.5%
- Exhaust to Hot Reheat Steam Generator (HRSG) 14 psi
- Compressor
 - Inlet 59 F, 15 psia
 - Outlet to RDE combustor, 180 psi and 683 F
 - Efficiency 85%
- Bypass Ratio = 0 (All air goes to RDE combustor)
- RDE Flow Equivalence Ratio = 0.45
- Steam Turbine & HRSG
 - 38% gross efficiency
 - Three Stage Turbine
 - Flue Gas exhaust 14 psi and 190 F

System Analysis Determines the Sensitivity of RDE-Specific Parameters on Plant Efficiency

AEROJET

Task 4.0 – CFD Integrated Component Modeling

- Non-uniform flow both temporally and spatially.
- Optimum turbine performance requires steady flow.
- Smoothing detonation pulse creates pressure loss.
- Challenge is balancing pressure loss of flow smoothing with turbine unsteady performance loss.

RDE Flow Path For Trade Study

Trade Study Parameters:

AEROJET

- 1. Isolator flow damping
- 2. Isolation shock strength
- 3. Equivalence ratio
- 4. Deflagration pre-burn
- 5. Detonation leak flow
- 6. Flow damping
- 7. Bypass mass flow
- 8. Bypass injection total pressure

CFD: Combustion can downstream of RD combustor

RDE Pressure and Temperature vs. Time for CFD Design Trade Study

To date, four broad classes of exhaust design configurations have been considered:

- 1) A configuration contracting then expanding the exhaust flow to the annulus axis.
- 2) Purely annular configurations.
- 3) Annular configurations with enhanced three-dimensional mixing.
- 4) Smoothing of the flow through magnetogasdynamics.

Preexisting RDE exit flow solution with ethylene and air propellants was used as an entrance boundary condition.

Contours for an Attenuator with a 15 degree Cone, Three Pulses, and Six Atmosphere Back Pressure

AEROJET ROCKETD

Contours for Initial RDE Plus Constant Area Ejector

Contours for a Lobed Mixer Ejector

AEROJET ROCKETDYNE

Parameter Profiles for Annular Attenuator

Profiles for Magnetohydrodynamic (MHD) Attenuator

Entrance (Inside) and Exit (Outside) Planes

Retarding or Accelerating force depending on the swirl direction (JxB).

The MHD system was successful in reducing the variation in the total pressure, bringing the Mach number down to subsonic, and reducing the swirl variation

Task 5.0 – Test Data Validation Hardware Development

Test Objective: Obtain RDE exhaust dynamic pressure measurements that can be used to validate component thermodynamic models.

Approach: Use angle-ofattack "cobra" pressure probe with high frequency sensors to measure per-pulse timeresolved exhaust flow angle.

Instrumentation (in Addition to the Cobra Probe) for the Hot-fire Test Program

81 Iow	channels v speed, 1	, lkHz	7Ch High Frequency Data: 1.25 MS/s PCB pressure at P3, P3.2 +3 more PCB for cobra probe 2 lon gauges										
Chamber Static Pressure	Air Venturi U/S Pressure	Air Venturi T hroat Pressure	Air T /A Feed Pressure	Air Inlet (outer) CT AP Pressure	Fuel Venturi U/S Pressure	Fuel Inlet Pressure #1	Fuel Inlet Pressure #2	Contraction Section Pressure	Air Venturi U/S Temperature	Air T/A Feed Temperature			
PT111	PT201	PT202	PT204	PT 254	PT 303	PT 304	PT 305	PT 902	TC201	T C204			
PSIA	PSIA	PSIA	PSIA	PSIA	PSIA	PSIA	PSIA	PSIG	deg_F	deg_F			
High 67,00 P _{u/s} ,T _{u/s} Ver	Speed Vie 0 fps 256 turi	deo: x256 ≻			P3,T3 P3.	2		₽7 ()					

Cobra Probe Design Took Advantage of Additive Manufacturing

- Obtained time-resolved per pulse flow angle of attack with high frequency pressure sensors.
- Also can extract time resolved total pressure.

Orientation of the Cobra Probe in the Combustion Chamber

24 cm RDE Hot-Fire Test Results

• 66 Hot-fire Tests

AEROJET ROCKETDY

- Three different fuels tested
 - Methane (41 tests)
 - 35/65 hydrogen/methane mixture (9 tests)
 - 70/30 hydrogen/methane mixture (16 tests)
- Equivalence ratio from 0.75 to 1.05
- Inlet air temperature from 310 to 764 degrees F
- Back pressure from 50 to 246 psia
- Air flow rate from 6.1 to 8.7 lbs/sec
- Detonation wave velocities > 3,300 feet/sec

25

Analysis of the test data is in progress

High magnitude pressure spikes indicate efficient detonation.

- Under the NETL "Rotating Detonation Combustion for Gas Turbines" contract, Aerojet Rocketdyne is assessing the potential of incorporating a rotating detonation engine into a Natural Gas Combined Cycle power plant.
 - AspenPlus cycle analysis of RDE-based power plants is on-going.
 - RDE potential performance gains can be achieved but system interfaces must be carefully engineered to minimize losses.
 - CFD modelling is being used to assess methods for interfacing the unsteady exhaust of an RDE with a conventional turbine.
 - Hot-fire testing of a 24 cm air/methane RDE at gas turbine conditions has been completed.
 - Analyses are on-going.
- Synthesis of the analysis and hot-fire results into a full scale system design study has been initiated.
- Final results will be reported in early 2016.