

2015 University Turbine Systems Research Workshop

Atlanta, Georgia November 3, 2015

Thar Energy Manufacturer of Heat Exchangers for sCO₂ Power Cycles

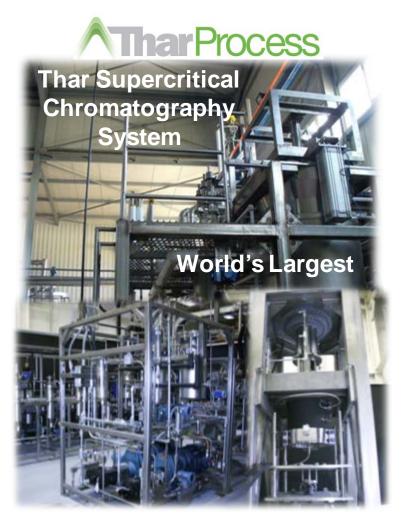
Lalit Chordia, PhD

150 Gamma Drive Pittsburgh, PA 15238 www.tharenergyllc.com

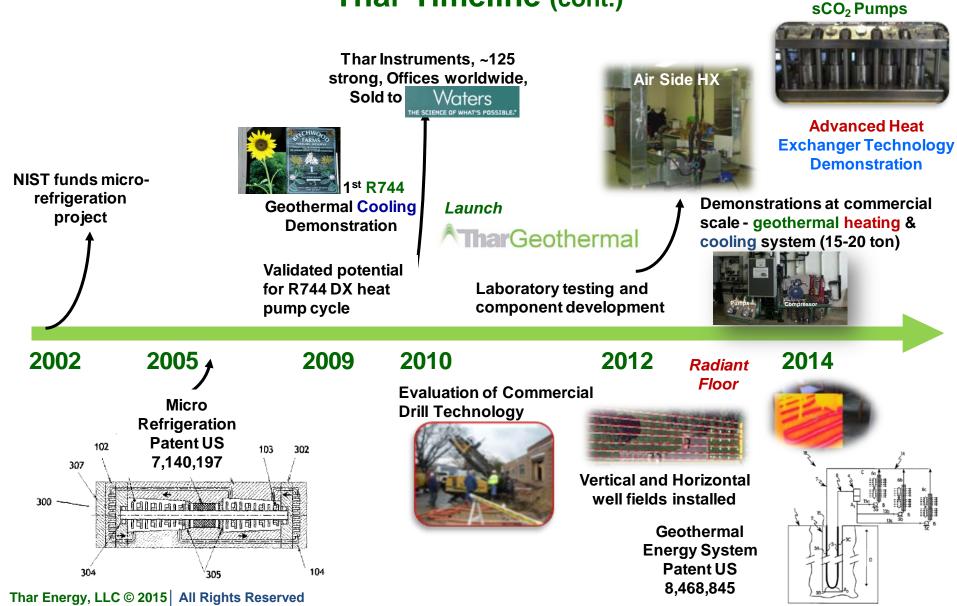
Outline

- Introduction
- Thar Energy Projects
- Modular Recuperator Project

Thar has a history of successfully designing & commercializing Green Products using recycled Carbon Dioxide.


Launch Suprex		Suprex sold to Teledyne Isco Launch Thar Brand	Ve	Pressurized ssel with Self- nergizing Seal		Spin out operating divisions
1982 Carnegie Mellon University Chemical Engineering	Chromatog	,814,089 & 4,871, raphic Separation ssociated Appara	n	Comm Awards & Pa U.S. Patents #5, #5,694,973, #5,8 #5,886,293, #6,9 #6,698 2001, 2002 2002 Nation 2002 NIST 2002, 2003 2002, 2003	•	Metler Toledo Excellence Award Finalist Exporter of the Year orefrigeration) npanies owing Companies

Over 5,000 green installations world wide



Over 20 Industrial green installations world wide

High Pressure

Thar Timeline (cont.)

S-CO₂ Heat Exchanger and Power Cycle Projects

PROJECTS	2014	2nd	3rd	4th	2015	2nd	3rd	4th	2016	2nd	3rd	4th	2017	2nd	3rd
Sunshot - 5.5 MW Recuperator															
1st Generation															
2nd Generation Recuperator -															
100 kW															
Modular - 47 MW Recuperator														Pha	se 2
3rd Generation														Two years	
Sunshot - 2.5 MW Heater															
1st Generation															
Oxy Combustion sCO2 Power															
Cycles															
Absorption/Desorption sCO2															
Power Cycles															
		4	0								47 //W				
		Heat Exc	0	_						_					

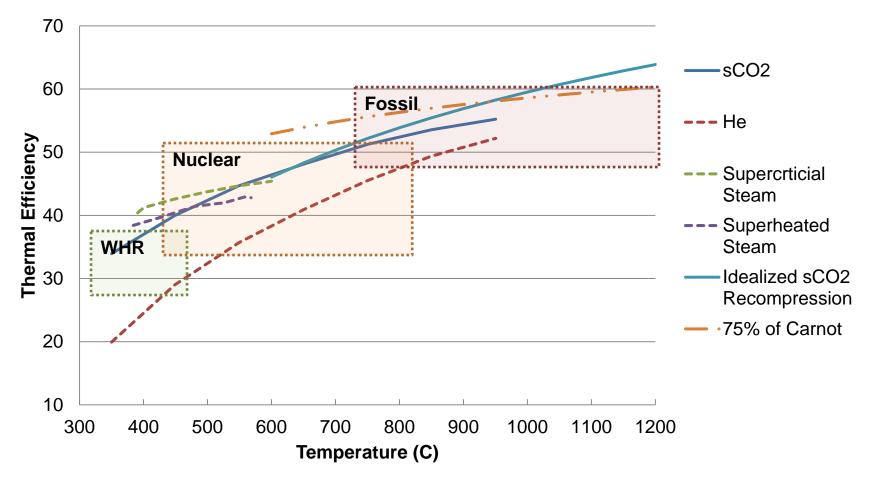
5.5

MW

100

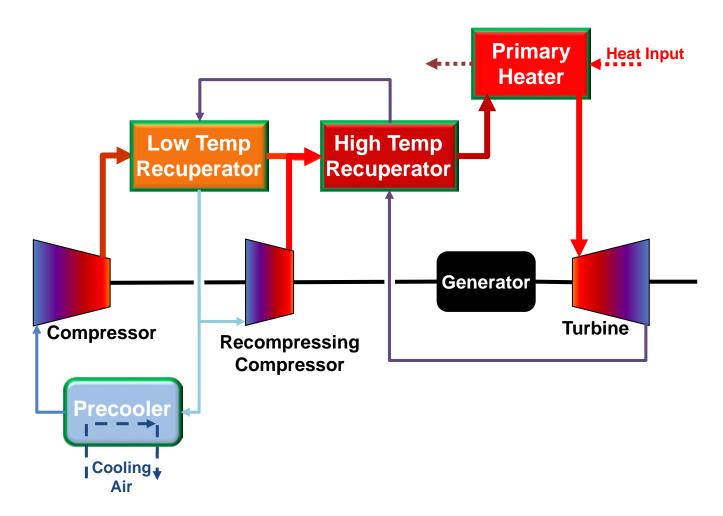
kW

Prototype

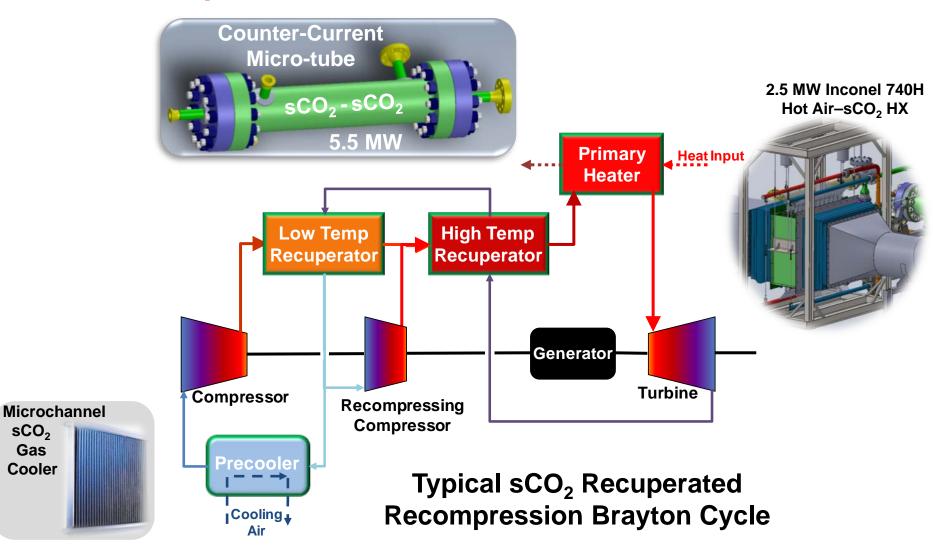

10

0

Modular


Why sCO₂?

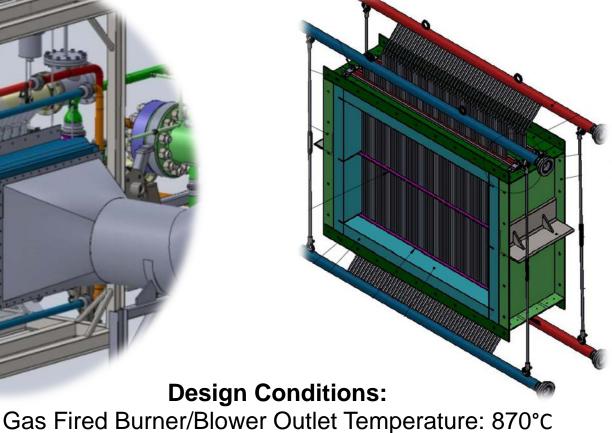
sCO2, He, Supercritical Steam, and Superheated Steam are from Driscol MIT-GFR-045, 2008



Typical sCO₂ Recuperated Recompression Brayton Cycle

Thar Energy sCO₂ **Recuperators, Heater HXs & Precooler HXs**

Thar Energy, LLC © 2015 All Rights Reserved

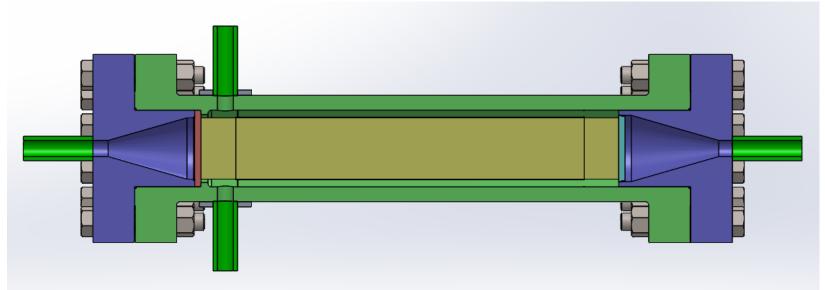

Gas

Sunshot Heater HX Design – 2.5 MW

Hot Gas to sCO₂ HX Inconel 740H Construction

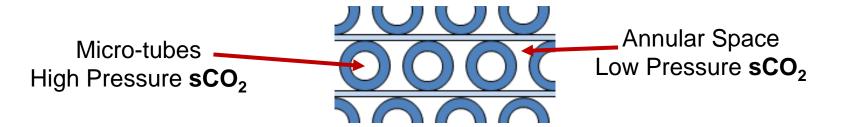


sCO₂ Outlet Temperature: 715°C


150 Gamma Drive Pittsburgh, PA 15238 www.tharenergyllc.com

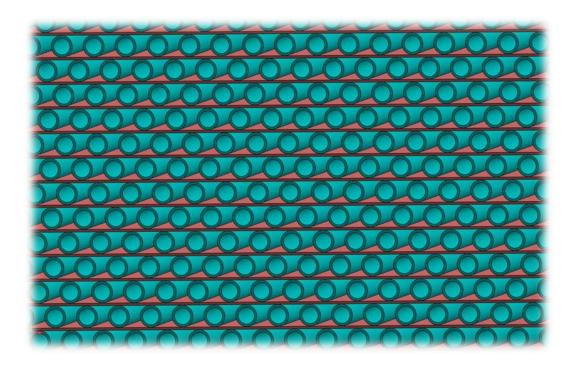
sCO₂ Gas Cooler HXs 35-500 kW

1st Generation Recuperator Design


sCO₂ counter-current - microchannel heat exchanger

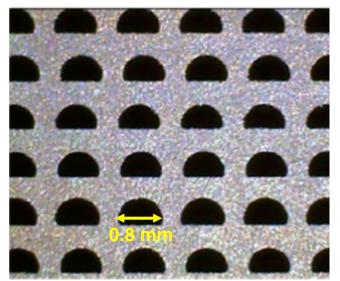
- Over 5 MW Capacity
- Operating Conditions: 567°C and 255 bar
- Design Conditions: 575°C @ 280 bar
- Floating Head Design
- Serviceability and Maintenance
- Replaceable Tube Bundle
- Easier to manufacture and assemble
- Small size of 9" Dia and 60" long

Designed per ASME Sec VIII, Div 1



Sunshot Recuperator Tube Bundle

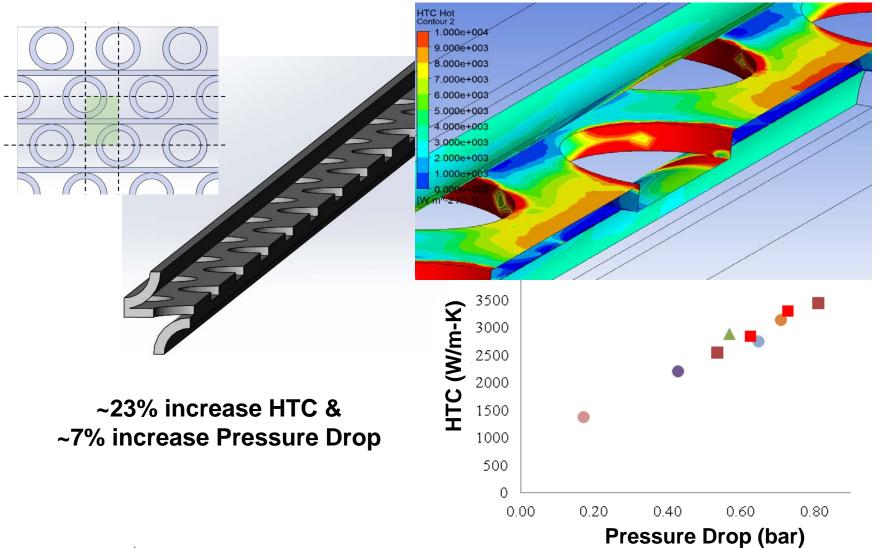
> 20,000 micro-tubes


Tube Bundle 4,500 m²/m³

Recuperator Tube Bundle Cross Section 9" diameter, 5' long, over 20,000 micro-tubes

Microchannel Printed Circuit HX

Entropy 2015, 17, 3438-3457; doi:10.3390/e17053438


Opacity: 74%

Thar Energy, LLC © 2015 All Rights Reserved

Opacity: 38%

Perforated Separator Sheet Analysis Improve the Pressure Drop to HTC ratio

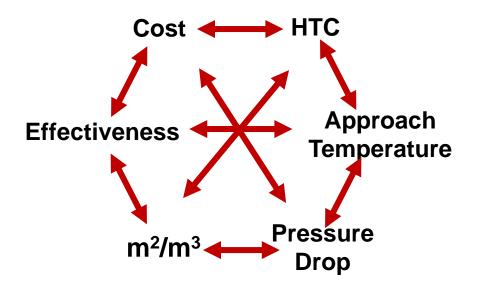
Modular, Low-Cost, High-Temperature Recuperators for sC0₂ Power Cycles

• Performance

- > Temperatures ≥ 700°C
- » Differential pressures ~200 bar
- > Lifetime (corrosion, creep, etc.)
- > Ease of maintenance

Scalability

- > 10 1,000 MWe Facilities
- Transport


• Cost < \$100/kWt

- Materials Selection
- Manufacturability

Focus of New Recuperator Designs

- Improve Performance/Cost Ratio
- Optimized materials' use for hot and cold sides
- Improved reliability
- Easier to assemble

Modular, Low-Cost, High-Temperature Recuperators for sC0₂ Power Cycles

- Engineering Assessment of Advanced Recuperator Concepts
 - Critical enabling technologies or components
 - Manufacturability of the proposed concepts
 - Potential nth of a kind production cost
 - Anticipated recuperator performance with respect to current state of the art
- Prototype Fabrication, Testing and Evaluation
- Down Select and Fabrication of 47 MWt Recuperator

Modular, Low-Cost, High-Temperature Recuperators for sC0₂ Power Cycles

Timeline

	10/1/15-3/31/17						4/1/17-3/31/19							
	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12	Q13	Q14
Phase 1														
Phase 2														

Summary Specializes in Low Cost Heat Exchangers Through Design and Manufacturability

- Advanced Recuperators
 - High Temperature Recuperators: up to 750 C
 - SS 316, Inconel 625, Inconel 740H
 - Low Temperature Recuperators
 - SS316, Aluminum
- Advanced Heaters
 - Up to 750 C
 - SS 316, Inconel 625, Inconel 740H
- Coolers
 - Aluminum microchannel heat exchangers
 - Approach temperatures of up to 2 C

Thank you for your kind attention!

Contact:

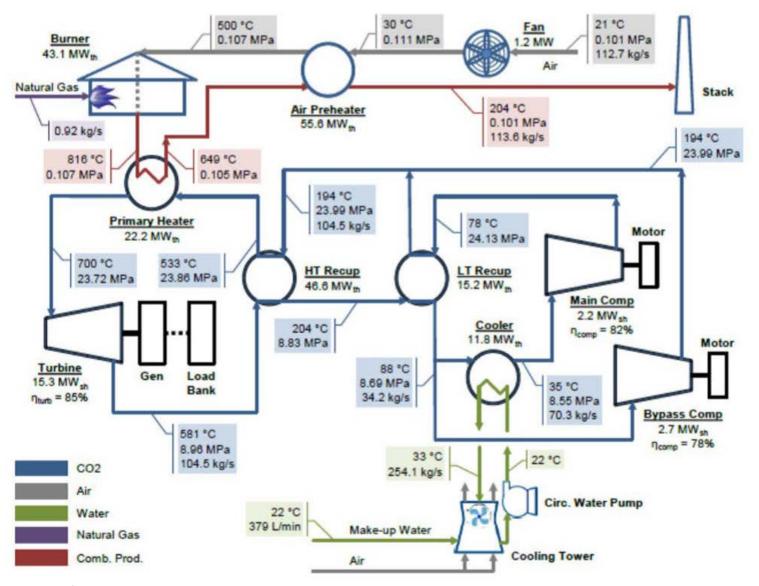
Lalit Chordia, PhD

Thar Energy, LLC Pittsburgh, PA 412-963-6500 Lalit.Chordia@tharenergyllc.com www.tharenergyllc.com

ADDITIONAL BACKGROUND SLIDES

"Typical" sCO₂ Cycle Conditions

Application	Organization	Motivation	Size [MWe]	Temperature [deg C]	Pressure [bar]
Nuclear	DOE-NE	Efficiency, Size	300 - 1000	400 - 800	350
Fossil Fuel	DOE-FE	Efficiency, Water Reduction	500 - 1000	550 - 1200	150 - 350
Concentrated Solar Power	DOE-EE	Efficiency, Size, Water Reduction	10, 100	500 - 1000	350
Shipboard Propulsion	DOE-NNSA	Size, Efficiency	10, 100	400 - 800	350
Shipboard House Power	ONR	Size, Efficiency	< 1, 1, 10	230 - 650	150 - 350
Waste Heat Recovery	DOE-EE ONR	Size, Efficiency, Simple Cycles	1, 10, 100	< 230; 230-650	15 - 350
Geothermal	DOE-EERE	Efficiency, Working fluid	1, 10, 50	100 - 300	150



Fossil Based sCO₂ Power Cycles

- Competition
 - Indirect: Supercritical Steam with CCS
 - Direct: Natural Gas Combined Cycle
- Advantages
 - High power efficiencies at "Moderate" temperatures
 - Oxy-combustion facilitates integrated carbon capture
 - Compact turbomachinery lead to compact power blocks
 - Partially offset by recuperation to achieve high cycle efficiencies
- Challenges
 - 250 C thermal input temperature widow (recompression cycle) is not ideal for combustion based systems
 - 400 C Combustor inlet for 650 C Turbine Inlet
 - 950 C Combustor inlet for 1200 C Turbine inlet
 - Flue gas cleanup for direct fired systems
 - Non-trivial efficiency losses for indirect cycles

Nominal 10 MWe RCBC test facility

