
Number of Active Species
• Large number of active species 

only exist near the flame.
• No-flame regions only have 2 

(cold reactants) or 10 (hot 
products) active species.

• Buffer layers b/w flame and no-
flame regions have intermediate 
number of active species.

Speed-Up
• ODEPIM: ~6 times in total, ~17 

times in chemistry.
• OAK: ~8 times in total, further 

~2.7 times in chemistry w/ 
negligible overhead.

• Co Tran: ~20 times in total, 
transport time become negligible 
w/ no overhead.

Parallel Scaling
• ODEPIM, OAK, Co Tran all show 

a good weak scaling of speed-up.
• Good strong scaling: no new 

communication overhead 
introduced by ODEPIM, OAK, Co 
Tran. 
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Introduction
Motivation
Next-generation gas turbines favor 
lean combustion for high efficiency 
and low emissions, which suffers 
from combustion instability, lean blowout (LBO), & related NOx formation [1].

Why Detailed Kinetics?
Detailed kinetics is the key to capture extreme 
combustion physics like LBO, negative 
temperature coefficient (NTC)-affected low 
temperature ignition (LTI) [2] in gas turbines.

Issues
• Detailed combustion kinetics (e.g. jet fuels 

of large molecules) have large number of species & high stiffness.
• Globally reduced kinetics mechanisms are still too large for DNS/LES.
• Simple on-line reduction has a very large CPU overhead.
• CPU time of chemistry is the most expensive part.
• CPU time of mixture-averaged transport is the 2nd most expensive part.

Results

Verification

Quantified Errors (after 1.5 eddy turn-over time)

Performance Analysis

Conclusions
1. New framework with OAK & Co Tran provides highly accurate results.
2. New framework with OAK & Co Tran has speed-up ~20 times in total, 

and ~46 times in chemistry, which enables DNS w/ detailed kinetics.
3. New framework shows good parallel weak & strong scaling.

Methods
Direct Numerical Simulation (DNS)
AVF-LESLIE code of CCL, Georgia Tech

Flow configuration
Premixed flame interaction with decaying 
isotropic turbulence

Kinetics
Globally reduced jet fuel mechanism with 
38 species & 185 elementary reactions

Point Implicit ODE solver (ODEPIM)
Fast semi-implicit stiff ODE solver [3]

Conventional Method for DNS Framework with OAK & Co Tran

Weak scaling of speed-up Strong scaling

Average 𝐿𝐿2 error Tgas (K) 𝑌𝑌𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  𝑌𝑌𝑂𝑂𝑂𝑂  �̇�𝜔𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  �̇�𝜔𝑂𝑂𝑂𝑂  
ODEPIM 1.19E-4 5.91E-09 9.50E-10 1.3E-4 1.01E-05 
ODEPIM+OAK 1.27E-4 6.46E-09 1.09E-09 1.36E-4 2.77E-05 
ODEPIM+OAK+CoTran 3.52E-4 1.02E-08 1.59E-09 1.62E-4 2.85E-05 
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On-the-fly adaptive kinetics (OAK)
Use path flux analysis (PFA) method [4] as kernel engine for on-the-fly 
mechanism reduction. Time and space correlation [5] is applied to 
reduce the CPU overhead for reduction

Correlated transport (Co Tran) is applied 
Compute mixture-averaged transport only once for each time and space 
correlated group [6]

Gas expansion Reaction rate of fuel on 
corrugated flame
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