

High Fidelity Computational Model for Fluidized Bed

Experiments

Vinod Kumar, Ph.D.

Associate Professor, Mech. Engg. & Core faculty, Computational Science,

University of Texas, El Paso (UTEP)

William (Bill) Spotz, Ph.D.

Senior Staff Scientist, Sandia National Labs, Albuquerque

Outline

• Technical goal

• Objectives

• Background

• Technical approach

• Tasks and subtasks

• Team description and assignments

• Project milestones, budget and schedule

• Project risks and risk management plan

• Project status

• Concluding remarks-

Technical goal

The technical goal of this project is to develop, validate and implement

advanced linear solvers to replace the existing linear solvers that are

used by the National Energy Technology Laboratory’s (NETL) open

source software package Multiphase Flow with Interphase eXchanges

(MFIX). This goal will be achieved by integrating Trilinos, a publicly

available open-source linear equation solver library developed by

Sandia National Laboratory, with MFIX. The project will demonstrate

scalability of the Trilinos- MFIX interface on various high-performance

computing (HPC) facilities including the ones funded by the Department

of Energy (DOE).

The expected results of the project will be reduction of computational

time when solving complex gas-solid flow and reaction problems in

MFIX, and reduction in time and cost of adding new algorithms and

physics based models into MFIX

Objectives

• Create a framework to integrate the existing

MFIX linear solver with Trilinos linear solver

packages,

• Evaluate the performance of the state-of-the-art

preconditions and linear solver libraries in Trilinos

with MFIX, and

• Test three dimensional (3D) MFIX suites of

problems on massively parallel computers with

and without GPU acceleration.

Background

The Multiphase Flow with Interphase eXchanges (MFIX)

software package, a multiphase Computational Fluid

Dynamics (CFD) software developed by NETL, is a widely

used by the fossil fuel reactor communities to model and

understand the multiphase physics in a circulating

fluidized bed. In MFIX, gas-solids are addressed by solving

coupled continuity and momentum conservation and

parameterizing many effects such as drag force, buoyancy,

virtual mass effect, lift force, Magnus force, Basset force,

Faxen force, etc.

Supercomputers

Top500 Google Compute Engine (Cloud

computer):

16core, 104 GB, $1.184/hr

MFiX (From MFiX reports)

Rogers, Syamlal, O’Brien

Convection-diffusion/Transport of

species
• First-order schemes/Second-

order/High-order schemes
The use of higher order methods may result in a

violation of Patankar’s Rule 2 in some regions!

• Downwind factors

• Numerical diffusion

• Consistency

MFiX Eqs & Schemes (From MFiX reports)

Rogers, Syamlal, O’Brien

MFiX Eqs & Schemes (From MFiX reports)

Rogers, Syamlal, O’Brien

And, Even More Equations…

MFiX

Solution algorithms
• SIMPLE (Patankar 1980)

• More variables than single phase (slows computations)

• The multiphase momentum equations are strongly coupled

through the momentum exchange term

• Handling of close-packed regions

• Fluid-pressure correction

• Boundary conditions

• Numerical schemes

• Linear/Non-linear system of equations solver

• Parallel/Distributed computing

• Partitioning/Domain decomposition

• I/O , Data management/Cloud

• Number crunching – HPC/GPU?

• Graphics

• Data-storage

• Rendering

MFIX

- has basic linear equations solvers (such as Point successive over relaxation or

SOR, Idealized Generalized Conjugate Gradient (IGCG), Incomplete LU

Factorization + Generalized Minimal RESidual (IGMRES), and Diagonal

scaling + GMRES or DGMRES) that results from the discretization of transport

equations.

- poor convergence in the linear equation solver can increase the number of

iterations and lead to nonconvergence of the iterations.

- An optimum degree of convergence has been determined from experience

and is controlled by a specified number of iterations inside the linear solver.

- The current capabilities in MFIX however lack the advanced solvers(such as

multi-level, segregated/block, algebraic preconditions, planned development

time integration methods, modular and latest linear/non-linear solvers).

MFIX Challenges

In nutshell, although MFIX is increasingly being used to

design & scale-up of fossil fuel reactors, overall utility of the

multiphase models remains limited due to the

computational expense of large scale simulations. The

time-to-solution however can be reduced by leveraging

state-of-the-art preconditions and linear solver libraries

where majority of processor-level time is spent in solving

large systems of linearized equations.

Technical approach

One of the main challenges for any software development is keeping the computer code

up-to-date with the advancement in applied mathematics, software and hardware

development in computational science and engineering. Realizing the challenge, the

CSRI group at Sandia has developed and continues to develop scalable solver

algorithms and software through next-gen (exa-scale, peta-scale, exteme-scale, etc.)

computing investment. The project is called Trilinos project.

Funded by various DOE entities mainly NNSA -

Advanced Simulation and Computing

(ASC)/DOE Office of Science (SciDAC),

Advanced Scientific Computing Research

(ASCR)

Note: Slides in this topic mostly borrowed from

M.Heroux & other trilinos members

Trilinos

The Trilinos Project is an effort to develop and implement robust algorithms and

enabling technologies using modern object-oriented software design, while still

leveraging the value of established libraries such as PETSc, Metis/ParMetis,

SuperLU, Aztec, the BLAS and LAPACK. It emphasizes abstract interfaces for

maximum flexibility of component interchanging, and provides a full-featured set

of concrete classes that implement all abstract interfaces. Research efforts in

advanced solution algorithms and parallel solver libraries have historically

had a large impact on engineering and scientific computing. Algorithmic advances

increase the range of tractable problems and reduce the cost of solving existing

problems. Well-designed solver libraries provide a mechanism for leveraging

solver development across a broad set of applications and minimize the cost of

solver integration. Emphasis is required in both new algorithms and new software

(Heroux et.al., http://trilinos.sandia.gov/).

http://trilinos.sandia.gov/
http://trilinos.sandia.gov/

What is Trilinos?

• Object-oriented software framework

for…

• Solving big complex science &

engineering problems

• More like LEGO™ bricks than

Matlab™

 Trilinos provides the state-of-the-art in preconditions and linear

solver libraries

• demonstrate scalability on current HPC systems

• illustrate plans for continued maintenance

• include support for new hardware technologies

Target Platforms

Desktop: Development and more…

Capability machines:
Redstorm (XT3), Clusters

Roadrunner (Cell-based).

Multicore nodes.

Parallel software environments:
MPI

UPC, CAF, threads, vectors,…

Combinations of the above.

User “skins”:
C++/C, Python

Fortran.

Web, CCA.

Unique features of Trilinos

Huge library of algorithms

Linear & nonlinear solvers, preconditioners, …

Optimization, transients, sensitivities, uncertainty, …

Discretizations, mesh tools, automatic differentiation, …

Package-based architecture

Support for huge (> 2B unknowns) problems

Support for mixed & arbitrary precisions

Growing support for hybrid (MPI+X) parallelism

X: Threads (CPU, Intel Xeon Phi, CUDA on GPU)

Built on a unified shared-memory parallel programming model:

Kokkos (see Session 2 & later this week)

Support currently limited, but growing

Evolving Trilinos Solution

Trilinos1 is an evolving framework to address these challenges:
Fundamental atomic unit is a package.

Includes core set of vector, graph and matrix classes (Epetra/Tpetra
packages).

Provides a common abstract solver API (Thyra package).

Provides a ready-made package infrastructure (new_package package):
• Source code management (cvs, git, bonsai).

• Build tools (Cmake).

• Automated regression testing.

• Communication tools (mailman mail lists).

Specifies requirements and suggested practices for package SQA.

In general allows us to categorize efforts:
Efforts best done at the Trilinos level (useful to most or all packages).

Efforts best done at a package level (peculiar or important to a package).

Allows package developers to focus only on things that are unique to

their package.

Evolving Trilinos Solution

Numerical math
Convert to models that
can be solved on digital
computers

Algorithms
Find faster and more
efficient ways to solve
numerical models

L(u)=f
Math. model

Lh(uh)=fh
Numerical model

uh=Lh
-1fh

Algorithms

physics

computation

Linear

Nonlinear

Eigenvalues

Optimization

Automatic diff.

Domain dec.

Mortar methods

Time domain

Space domain

Petra

Utilities

Interfaces

Load Balancing

solvers

discretizations methods

core

 Beyond a “solvers” framework

 Natural expansion of capabilities to satisfy

application and research needs

 Discretization methods, AD, Mortar methods, …

Trilinos Strategic Goals

Scalable Computations: As problem size and processor counts increase,
the cost of the computation will remain nearly fixed.

Hardened Computations: Never fail unless problem essentially
intractable, in which case we diagnose and inform the user why the
problem fails and provide a reliable measure of error.

Full Vertical Coverage: Provide leading edge enabling technologies
through the entire technical application software stack: from problem
construction, solution, analysis to optimization.

Grand Universal Interoperability: All Trilinos packages will be
interoperable, so that any combination of packages that
makes sense algorithmically will be possible within Trilinos and with
compatible external software.

Universal Accessibility: All Trilinos capabilities will be available to users
of major computing environments: C++, Fortran, Python and the Web,
and from the desktop to the latest scalable systems.

Universal Capabilities RAS: Trilinos will be:
Integrated into every major application at Sandia (Availability).

The leading edge hardened, efficient, scalable solution for each of these
applications (Reliability).

Easy to maintain and upgrade within the application environment
(Serviceability).

Algorithmic

Goals

Software

Goals

Trilinos Packages

Trilinos is a collection of Packages.

• Each package is:

Focused on important, state-of-the-art algorithms in its problem
regime.

Developed by a small team of domain experts.

Self-contained: No explicit dependencies on any other software
packages (with some special exceptions).

Configurable/buildable/documented on its own.

• Sample packages: NOX, AztecOO, ML, IFPACK, Meros.

• Special package collections:

Petra (Epetra, Tpetra, Jpetra): Concrete Data Objects

Thyra: Abstract Conceptual Interfaces

Teuchos: Common Tools.

New_package: Jumpstart prototype.

• Multi-scale/physics simulation– Panzer
User Physics Kernels + Problem Description =
Thyra::ModelEvaluator

Trilinos Package Summary
Objective Package(s)

Discretizations
Meshing & Discretizations Intrepid, Pamgen, Sundance, Mesquite, STKMesh

Time Integration Rythmos

Methods
Automatic Differentiation Sacado

Mortar Methods Moertel

Services

Linear algebra objects Epetra, Tpetra

Interfaces Xpetra, Thyra, Stratimikos, Piro, …

Load Balancing Zoltan, Isorropia, Zoltan2

“Skins” PyTrilinos, WebTrilinos, ForTrilinos, CTrilinos

Utilities, I/O, thread API Teuchos, EpetraExt, Kokkos, Phalanx, Trios, …

Solvers

Iterative linear solvers AztecOO, Belos, Komplex

Direct sparse linear solvers Amesos, Amesos2, ShyLU

Direct dense linear solvers Epetra, Teuchos, Pliris

Iterative eigenvalue solvers Anasazi

Incomplete factorizations AztecOO, Ifpack, Ifpack2

Multilevel preconditioners ML, CLAPS, MueLu

Block preconditioners Meros, Teko

Nonlinear solvers NOX, LOCA

Optimization MOOCHO, Aristos, TriKota, GlobiPack, OptiPack

Stochastic PDEs Stokhos

Full Vertical

Solver Coverage

Bifurcation Analysis LOCA

DAEs/ODEs:

Transient Problems

Rythmos

Eigen Problems:

Linear Equations:

 Linear Problems
AztecOO

Belos

Ifpack, ML, etc...

Anasazi

Vector Problems:

Matrix/Graph Equations:

Distributed Linear Algebra Epetra

Tpetra

Optimization

MOOCHO
Unconstrained:

Constrained:

Nonlinear Problems
NOX

S
e

n
s
it
iv

it
ie

s

(A
u
to

m
a
ti
c
 D

if
fe

re
n
ti
a
ti
o
n
:

S
a
c
a
d
o
)

Kokkos

Proposed Tasks and

subtasks

Task1

Task 1.0 – Project Management and Planning

The Recipient will develop and maintain a project management plan

to foster team interaction, track deliverables, maintain and implement

a project risk management plan, interface with DOE, and report

progress and financials in accordance with the requirements set forth

in the award document. Any proposed revisions to deliverables,

milestones, project schedule, or budget shall be reported to DOE in

accordance with the terms and conditions of the award.

Task2

Task 2.0 – Assembly of Optimum Trilinos Linear Equation

Package for Integration with MFIX

Setup a GIT/version-control repository for development of the

Trilinos-MFIX interface, choose the most suitable Trilinos software

package for this project, and develop a ForTrilinos based Fortran

program interface for MFIX

Subtasks

Subtask 2.1: Setup a GIT/version-control repository

Establish a GIT repository so that changes to files can be recorded and

recalled, and to accelerate creation, merging and deletion of computer code

in the Trilinos-MFIX interface

Subtask 2.2: Select the optimum Trilinos software package

Select the Trilinos software package for MFIX that best supports distributed

data structures and provides access to performance-portable algorithms for

Graphical Processing Units (GPU) and other HPC architectures

Subtask 2.3: Develop a ForTrilinos based Fortran interface for MFIX

Develop a software interface to link the Fortran based MFIX software with

the C/C++ based Trilinos software by developing a complete link between

the object oriented Fortran interface package, ForTrilinos, with the

Stratimokos package in Trilinos.

Challenges: Many different third-party solvers but no clear winner for all

problems. Different, changing interfaces & data formats, serial & parallel

Targeted solver package

Amesos: Interface to sparse direct solvers

Accepts Epetra & Tpetra sparse matrices & dense vectors

AztecOO

Iterative linear solvers: CG, GMRES, BiCGSTAB,…

Incomplete factorization preconditioners

Belos Next-generation linear iterative solvers

Block & pseudoblock solvers: GMRES & CG

Recycling solvers: GCRODR (GMRES) & CG

“Seed” solvers (hybrid GMRES)

Block orthogonalizations (TSQR)

EPetra/TPetra Software Stacks

Developers: M. Heroux, et.al.

Task3

Task 3.0 – Performance Evaluation of Preconditions and Linear Solver

Libraries

Evaluate the performance of the preconditions and linear solver libraries,

perform a scalability analysis for use of the selected libraries on large

parallel computing systems, and improve computing performance of the

Trilinos-MFIX interface.

Subtasks

Subtask 3.1: Test and compare the linear equation solver packages in

Trilinos

Run test cases of fluidized bed simulations in MFIX using the various Trilinos

linear equations preconditioner and solver packages. Compare the performance

(computing time and accuracy) of the MFIX- Trilinos package with solutions that

use MFIX and its existing linear solvers.

Subtask 3.2: Perform a scalability analysis of Trilinos-MFIX

Conduct scalability tests of the Trilinos-MFIX package on single node and multi-

core computer clusters using distributed/shared or in hybrid environment HPC

systems. Test multi-core clusters containing 4, 16, 64, 128, 512 and 1024 cores.

Subtask 3.3: Improve performance of Trilinos-MFIX

Use the profiling and debugging tools in Trilinos to determine the bottlenecks in

the Trilinos-MFIX package and then improve the performance (computing time

and accuracy of solution) of the Trilinos linear solvers when they are used in

MFIX.

Task4

Task 4.0 –Performance Evaluation of MFIX with the Trilinos Linear

Solver on Massively Parallel Computers

Obtain computing time on one or more massively parallel HPC systems,

compile and test the Trilinos-MFIX package on those systems, and compare

its performance with the existing MFIX-linear solvers using selected gas-

solid fluidized bed problems that have been previously solved using MFIX.

Subtask 4.1: Secure computational time on massively parallel computers

Subtask 4.2: Compile Trilinos-MFIX on the selected massively parallel

computer(s)

Subtask 4.3: Run simulations of a fluidized bed test problems with various

particle sizes and shapes

Subtask 4.4: Analyze Trilinos-MFIX performance for various computer

architectures and fluidized bed test problems

Team description, assignments & organization

Principal Investigator

V. Kumar (UTEP)

Postdoc

TBD (UTEP/Sandia)

Graduate Student

TBD (UTEP)

Admin Assistant

J. Macias (UTEP)

Collaborator

B. Spotz (Sandia)

Program Manger

V. Cedro (NETL)

Contract Specialist

C. Tomasiak (NETL)

Assignments:

• Kumar: responsible for project management, timely task

completion, reports to the funding agency (as required),

and supervising graduate and the postdoc.

• Spotz: provide technical assistance on Trilinos and DOE

supercomputing facilities to UTEP team. He will be

responsible for the Subtask 2.2.

• Postdoc: responsible for Task 2 & 3 & assisting the

graduate student to perform the tests.

• Graduate student: responsible for the Task3.

Sabbatical

Visiting Professor

Visiting Professor

AFOSR Visiting Faculty

DOE FaST Fellow

Cons/Smr-faculty

ORISE Visiting Faculty

Visiting Faculty

Sandia, Trilinos/CSRI

Sandia, CSP

Sandia, Climate Modeling

KAFB/Maui, Atmospheric turbulence

NREL, Thermal-fluid/CSP

Sandia, Climate Modeling

NETL, Geological Sequestration

ORNL, Climate Modeling

08/2015 – 2016

09/2012 – 12/2014

09/2010 – 08/2013

06/2012 –08/2012

06/2011 – 08/2011

06/2010 – 08/2010

06/2010 – 08/2010

06/2009 – 08/2009

Development Engineer Fluent (now ANSYS) 07/1997 – 05/1999

UG RA IIT Kanpur 07/1995 – 07/1997

UTEP Associate Professor

Assistant Professor, Mechanical Engineering

2014 - Present

2008-2014

GFDL(Princeton Univ./NOAA) Research Scientist, Climate Modeling 2007-2008

Rice Univ, PostDoc, Physic & Astronomy 2005-2007

Rice Univ, Ph.D., Mechanical Engineering 1999-2005

IIT Kanpur B.Tech., Aerospace Engineering 1993-1997

Principal Investigator: Dr. V. Kumar, University of Texas at El Paso

Team description, assignments & organization

Collaborator: Dr. William Spotz

Senior Member of Technical Staff, Sandia National Laboratories (SNL)

Education and Training

Postdoc, Adv Study Program, Nat’l Center for Atmospheric Research (NCAR)

Ph.D., Aerospace Eng, University of Texas at Austin (Adv: Prof. Graham Carey)

M.S., Aerospace Eng, University of Texas at Austin, (Adv: Prof. Graham Carey)

B.S., Aerospace Eng, University of Texas at Austin

1996-98

1991-95

1989-91

1985-89

Professional Experience

 SNL Senior Member, Tech Staff Computing Research Center 11/01-Present

 DOE Program Manager Adv Scientific Computing Rsrch 06/08 - 05/10

NCAR Project Scientist Scientific Computing Div 06/98-10/01

Project milestones, budget and schedule
Table 1. Milestone log

 Title Description

Related task or

subtask

Expected

Completion

Date Success Criteria

Budget Year 1:

Milestone 1.1 GIT repository setup

completed

Setup GIT/version-control

repository for Trilinos

MFIX

Subtask 2.1 Q1

A working repository

tested by at least three

researchers

Milestone 1.2 Best Trilinos linear

solver package

decided

Choose the best Trilinos

linear solver package for

MFIX

Subtask 2.2 Q2 Source code for the

decided package

uploaded to the GIT

repository

Milestone 1.3 Fortran interface for

Trilinos MFIX

created

Develop Fortran interface

for the Trilinos linear

solver to communicate

with MFIX

Subtask 2.3 Q3-4 A working version of

the Fortran interface

uploaded

Budget Year 2:

Milestone 2.1 >30% Linear solved

speedup achieved

Test the linear solvers for

its performance

Subtask 3.1 Q5 20% or better linear

solver speedup

achieved

Milestone 2.2 Scalability issues

identified

Perform scalability analysis

of Trilinos-MFIX

Subtask 3.2 Q6 Scalability testing for

up to 1024 cores

performed

Milestone 2.3 Bottlenecks to

scalability identified

and removed

Perform code profiling and

identify bottlenecks

Subtask 3.3 Q7-8 Code profiling on

Trilinos profiler

completed and

bottlenecks addressed

for one HPC system

Budget Year 3:

Milestone 3.1 Trilinos MFIX

compiled on various

OS/architectures

Compile Trilinos-MFIX on

various cloud/HPC

computers

Subtask 4.3 Q9 Trilinos MFIX

compiled on 3 HPC

(UTEP, DOE-Sandia,

and one more)

Milestone 3.2 MFIX tests suites

completed

Run simulations with

various particle sizes and

shapes of fluidized bed

riser test problems

Subtask 4.3 Q10 All 2D runs and one

3D tests validated

Milestone 3.2 Trilinos MFIX

performance

analysis completed

Analyze Trilinos-MFIX

performance for various

computing architectures

and fluidzed-test problems

Subtask 4.3 Q11-12 Report submitted

Project budget

Year 1 Year 2 Year 3

Month Projected Budget Quarter Projected Budget Quarter Projected Budget

1 $5,540 1 $40,338 1 $17,420

2 $5,540 2 $40,338 2 $17,420

3 $5,540 3 $40,338 3 $17,420

4 $5,540 4 $52,338 4 $29,420

5 $13,851
 6 $13,851
 7 $13,851
 8 $13,851
 9 $13,851
 10 $25,851
 11 $13,851
 12 $13,851

 Total $144,969

$173,352

$81,678

Total all
Year $399,999

Project schedule

Task Title Budget Period: 1
st
 half Budget Period: 2

nd
 half

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12

Program

Management

Software

preparations

Subtask 2.1

Subtask 2.2

Subtask 2.3

Trilinos MFIX

Linear Solver

Subtask 3.1

Subtask 3.2

Subtask 3.3

MFIX suite tests

Subtask 4.1

Subtask 4.2

Subtask 4.3

Project risks & risk management plan
R

is
k

C
at

eg
o

ry

D
es

cr
ip

ti
o

n

o
f

th
e

R
is

k

P
ro

b
ab

ili
ty

o
f

O
cc

u
rr

in
g

Im
p

ac
t

O
ve

ra
ll

Le
ve

l
o

f
th

e
R

is
k

R
is

k

M
it

ig
at

io
n

St
ra

te
gy

In
te

rn
al

 D
at

a

St
o

ra
ge

 A
rr

ay
 How will the internal data

storage arrays (a

setpadiagonal matrix) be

reconciled with native

Trilinos data structures

Med Low Low 1) Define a class that directly copy the data

2) Compressed sparse row matrix storage

3) Discussions with experts at Sandia to determine which

approach would be best

Fo
rT

ri
lin

o
s

Trilinos Fortran interfaces High Low Low 1) Consider Python as a glue language since it provides

automatic wrapper generators.

2) Leverag from collaborators’ existing PyTrilinos project

3) Integrate the fortran interface fully with Stratimikos

Ex
te

rn
al

 s
u

p
er

co
m

p
u

te
r

ac
ce

ss

Securing access to the

external supercomputers

Low Low Low Added as subtask to Secure external resources. Strategies are

1) Work with Sandia Collaborator to secure DOE’s HPC for

Trilinos MFIX performance testing

2) Request for more allocation on TACC HPC through UT

System HPC initiatives

3) Write proposal to secure computing hours on XSEDE HPC

resources

4) PI already has access to Linux and IBM clusters through

UTEP’s HPC facilities

Project status

• Setup GIT/version-control repository

• Select optimum Trilinos software package

• Develop ForTrilinos based Fortran interface for MFIX

• Test and compare the linear solver packages in Trilinos
• Run test cases of fluidized bed simulations in MFIX using the various Trilinos linear

equations preconditioner. Compare the performance (computing time and accuracy) of

the MFIX- Trilinos package with solutions that use MFIX and its existing linear solvers

• Perform scalability analysis of Trilinos-MFIX
• Conduct scalability tests of the Trilinos-MFIX package on single node and multi-core

computer clusters using distributed/shared or in hybrid environment HPC systems. Test

multi-core clusters containing 4, 16, 64, 128, 512, 1024, 8192(?) cores.

• Address Trilinos-MFIX performance bottlenecks via profiling and debugging tools

in Trilinos

• Run fluidized bed test problems (various particle sizes and shapes, 2D/3D,

Small/Large Scale, etc.)

Install cmake28

Install Python Modules: Numpy, Scipy, Cython

Install matio libraries

Install swig 2.0.8

Install mpi4py

Install openGLM

Install Trilinos

#!/bin/bash

Base on https://code.google.com/p/trilinos/wiki/BuildScript

==

Requirements:

Install python Numpy and Scipe

==

Trilinos Source location

SOURCE_BASE="/root/trilinos-11.10.2-Source/"

Path to build source

BUILD="$SOURCE_BASE/Build"

Installation path:

PREFIX="/shared/trilinos/11.10.2/"

Third party software installation paths

MPI_HOME="/shared/gcc/4.4.7/openmpi/1.8.1"

MPI_BIN="${MPI_HOME}/bin"

MKLROOT="/shared/lib/lib64"

NETCDF="/shared/netcdf"

cmake28 \

-D CMAKE_INSTALL_PREFIX="${PREFIX}" \

-D Trilinos_INSTALL_INCLUDE_DIR:PATH="${PREFIX}/include" \

-D Trilinos_INSTALL_LIB_DIR:PATH="${PREFIX}/lib" \

-D Trilinos_INSTALL_RUNTIME_DIR:PATH="${PREFIX}/bin" \

-D CMAKE_BUILD_TYPE:STRING=RELEASE \

-D TPL_ENABLE_MPI:BOOL=ON \

-D MPI_BASE_DIR:FILEPATH="${MPI_HOME}" \

-D MPI_EXEC:FILEPATH="${MPI_BIN}/mpiexec" \

-D MPI_Fortran_COMPILER:FILEPATH="${MPI_BIN}/mpif90" \

-D MPI_CXX_COMPILER:FILEPATH="${MPI_BIN}/mpicxx" \

-D MPI_C_COMPILER:FILEPATH="${MPI_BIN}/mpicc" \

-D CMAKE_CXX_FLAGS:STRING="-ansi -Wall" \

-D BLAS_LIBRARY_DIRS:FILEPATH="${MKLROOT}" \

-D BLAS_LIBRARY_NAMES:STRING="mkl_rt" \

-D LAPACK_LIBRARY_DIRS:FILEPATH="${MKLROOT}/" \

-D LAPACK_LIBRARY_NAMES:STRING="mkl_rt" \

-D Netcdf_INCLUDE_DIRS:FILEPATH="${NETCDF}/include"\

-D Netcdf_LIBRARY_DIRS:FILEPATH="${NETCDF}/lib"\

-D Netcdf_LIBRARY_NAMES:STRING="netcdf"\

-D Trilinos_ENABLE_OpenMP:BOOL=ON \

-D BUILD_SHARED_LIBS:BOOL=ON \

-D Trilinos_ENABLE_TESTS:BOOL=ON \

-D Trilinos_ENABLE_DEBUG:BOOL=ON \

-D Trilinos_SHOW_DEPRECATED_WARNINGS:BOOL=OFF\

-D Trilinos_ENABLE_ALL_PACKAGES:BOOL=ON \

-D Trilinos_ENABLE_SECONDARY_STABLE_CODE:BOOL=OFF\

-D Trilinos_ENABLE_PyTrilinos:BOOL=ON \

$EXTRA_ARGS \

${SOURCE_BASE}

Compilation Script – Trilinos 11.10.2

• A web-based interface to Trilinos

• Most of Trilinos from the Web

Teuchos, Epetra, EpetraExt, Galeri

AztecOO, Amesos, IFPACK, ML,

PyTrilinos

• XML, PHP, PyChart

• C++ module, which allows the programs

• MPI hack, web-socket

• HTML5 – SVG, WebGL

Install Pychart
Untar, CD into folder

python setup.py install

Testing

python ./demo/date.py > ../../date.pdf

evince ../../date.pdf

Install Apache/httpd

Install PHP

Installing the Web interface
 - Trilinos install by default the minimal WebTrilinos requirements

vi Build-Webtrilinos

#!/bin/bash

Third party software installation paths

MPI_HOME="/shared/gcc/4.4.7/openmpi/1.8.1"

MPI_BIN="${MPI_HOME}/bin"

MKLROOT="/shared/lib/lib64"

NETCDF="/shared/netcdf/4.3.2"

./configure --prefix=/shared/WebTrilinos --enable-mpi --enable-tests --enable-

webtrilinos-tests --enable-webtrilinos-examples --with-mpi-

compilers="${MPI_BIN}"

sh Build-Webtrilinos

Trilinos installation

Apache+PHP

Web-Trilinos

Web-Trilinos: Error!

Adding the /shared/trilinos/11.2.3/lib to LD_LIBRARY_PATH does not work!

Fix adding ldconfig it does:

Touch /etc/ld.so.conf.d/trilinos-11.2.3.conf

/shared/trilinos/11.2.3/lib

ldconfig -v (update the library path)

Concluding remarks

• Desktop to Supercomputers

• Latest solver capability

• Extreme (Exa?) Scale computing

• Scalable Linear Algebra Themes:
Multicore/GPUs: Pre-requisite for extreme scale.

Multi-precision algorithms.

Cloud based Supercomputing with Touchpad
interface?

HPC/Cloud/GPU
Future!

HPC/Cloud/GPU
Future!

