
Interfacing MFIX with PETSc
and HYPRE Linear Solver

libraries

Award #: DE-FE0026191

PI: Gautham Krishnamoorthy (UND)
Co-PI: Jeremy Thornock (U.Utah)

October 28th , 2015
Presentation at:

DOE-NETL

Objective/Vision
• Build a robust, well-abstracted, interface to the PETSc,

HYPRE linear solver libraries from MFIX

• Code verification against established MFIX solutions and
code to code comparisons

MFIX
Input and
make files

Improved speed
and scaling performanceHYPRE

PETSc

MFIX
Code

Objective/Vision (continued)
• Identification of optimum solvers and pre-conditioners

10

100

1000

10000

1 10 100 1000

Number of Processors

Ti
m

e
(s

ec
s)

Point Jacobi
Block Jacobi

PETSc

HYPRE

0.1

1

10

100

1000

10000

1 10 100 1000
Number of Processors

Ti
m

e
(s

ec
on

ds
)

Solve time (37 x 37 x 37)

Solve time (61 x 61 x 61)

Solve time (121 x 121 x 121)

Linear scaling (37 x 37 x 37)

Linear scaling (61 x 61 x 61)

Linear scaling (121 x 121 x 121)

Objective/Vision (continued)

PETSc

HYPRE

Examining the scaling of MFIX when invoking PETSc and HYPRE

Background
Software Abstraction

The problem:
• MFIX already has linear solver options
• Interfacing with the linear solver packages is not universal (different

stencil setup operations)
• Fortran (MFIX is written in F90) isn’t an object-oriented

programming language

Our approach:
• To enable programmers and users, a well abstracted ‘linear solver

interface’ is required
• Operations to setup a general linear solve (Ax=b), is easily

abstracted
 Compute matrix and vector elements (local to global mapping in

PETSc and HYPRE)
• Object orientation can be simulated in F90 with some clever use of

existing F90 features
• Define a common interface (a.k.a base class) and derive specific

solver interface for existing MFIX solvers, HYPRE, and PETSC, etc.

Background
Hypre

• Hypre (LLNL) is a linear solver package for the solution of
preconditioned, sparse linear systems (including multigrid)

• Hypre includes native support for Fortran codes (MFIX)
• U.Utah and UND have extensive experience using Hypre for septa-

diagonal matrix systems (Pressure-Poisson and P-1 radiation model)
• Hypre is current production linear solver for the U. of Utah’s combustion

(including PC) Arches code (Thornock; current software architect)

Arches/Hypre weak
scaling up to 512K
cores for a PC
combustion simulation
(simulations performed
on Mira)

Background
PETSc

• PETSc (ANL) is a linear solver package for the solution of
preconditioned, sparse linear systems (KSP)

• PETSc includes native support for Fortran codes (MFIX)
• U. Utah and UND have extensive experience using PETSc (non-

symmetric matrices resulting from the discrete ordinates radiation model)

10

100

1000

1 10 100 1000
Number of Processors

Ti
m

e (
se

co
nd

s)

GMRES
BiCGSTAB

PROJECT MANAGER
University of North Dakota

UND
Gautham Krishnamoorthy

UU Principal
Investigator

Jeremy
Thornock

UND Principal
Investigator

Gautham
Krishnamoorthy

UU Graduate
Student

UND Graduate
Student

1 visit/year to partner
University

Collaboration,
Virtual meetings and exchanges

Team Description

HYPRE PETSc

Task 1 (Description): Project Management

• UND and U.Utah have discussed and concurred on a
plan to move forward on this project

• MFIX, PETSc and HYPRE have been downloaded,
compiled and tutorials have been run at both centers

• A graduate student has been recruited at UND,
recruitment efforts ongoing at Utah

Task 2 (Description): Interfacing MFIX with PETSc
and HYPRE

• Problem Setup*: Solver parameters (solver tolerances, maximum
number of iterations, solver types, pre-conditioners etc...)

• Solver Setup*: Solver object creation (allocation of A, x, and b) and
initialization methods.

• Communication Linear System: Handshake (or “mapping”) function for
passing the linear system coefficients (A) and right-hand-side values (b)
in the current native MFIX data-structure to the solver-specific types.

• Solve System: Compute the solution (x) to the linear system

• Return/Copy Solution: Conversion of the solver type solution (x) to the
current, native MFIX type

• Cleanup: De-allocation and destruction of solver objects

*one-time costs during simulation start-up during a transient calculation

Task 3 (Description): Code verification
• Established solutions from MFIX tutorials on serial and

parallel machines
• Code-to-code comparisons (ANSYS FLUENT, ARCHES)

Task 4 (Description): Solver optimization

• PETSc (GMRES, BiCGSTAB)
• HYPRE (Pre-conditioned multigrid)

Task 5 (Description): Scaling studies

Ash Cluster Hardware Overview
• 253 12 Core Nodes and 164 20 Core Nodes (6316 total

cores)
• 2.8 GHz Intel Xeon (Westmere X5660) processors
• 24 Gbytes memory per node on the 12 core nodes
• 64 Gbytes memory per node on the 20 core nodes
• Mellanox FDR Infiniband interconnect
• Gigabit Ethernet interconnect for management

U. Of Utah’s Ash cluster will be used for scaling tests

(photo credit: Sam T. Liston)

GANTT chart

Milestones
Year 1 (9/1/2015 – 8/31/2016)
• Successful mapping of “A” and “b” elements from

native MFIX data structure to PETSc and HYPRE
solver objects

• MFIX runs with PETSc and HYPRE linear solver
options on serial machines. Solutions verified against
existing MFIX tutorials

• Solver options are specified within the source code

Year 2 (9/1/2016 – 8/31/2017)
• Refinement of the solver interface
• Extension of MFIX-PETSc-HYPRE coupling to parallel

machines and solution verification

Year 3 (9/1/2017 – 8/31/2018)
• Identification of optimum solvers (explore dependency

on flow regimes)
• Scaling performance
• Rigorously assess improvement in time to solution

compared to native MFIX linear solvers

	Interfacing MFIX with PETSc and HYPRE Linear Solver libraries
	Objective/Vision
	Objective/Vision (continued)
	Objective/Vision (continued)
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Task 1 (Description): Project Management
	Task 2 (Description): Interfacing MFIX with PETSc and HYPRE
	Task 3 (Description): Code verification
	Slide Number 12
	GANTT chart
	Milestones

