

Application of Chemical Looping with Spouting Fluidized Bed for Hydrogen-Rich Syngas Production from Catalytic Coal Gasification

Award Number **DE-FE0024000**

Kunlei Liu

Liangyong Chen, Zhen Fan, and Fang Liu

Center for Applied Energy Research University of Kentucky 2540 Research Park Drive Lexington, KY 40511-8410

Morgantown, WV

Limitations

- ✤ ASU & external water gas shift reaction
- ✤ Narrowed temperature range, and limited availability of sensible heat
- \clubsuit Extensive CH₄ and tar formation for low temperature gasification
- Low H₂ / CO ratio, and complicated process for slag discharge and waste water treatment

Process	Outlet Gas	Oxidant	Steam	Carbon	CH ₄ concentration/	H ₂ /CO
	Temperature (°C)	Demand	Demand	Conversion	tar	(mol/mol)
Moving/fixed bed	425-650	low	high	low	>4%/high	2
Fluidizedbed	900-1050	moderate	moderate	moderate	>2%/Iow	0.6~0.7
Entrainedflow	1250-1600	high	low	High>95%	<1000ppm/No	0.7

Characteristics of different gasification process

Develop a transformative catalytic coal gasification technology

- Avoidance of ASU and external WGS
- High temperature gasification to improve cold gas efficiency
- Improve H₂/CO ratio and eliminate CH₄ formation

Multi-function oxygen carrier development

- Oxygen & heat carrier
- Catalyst to improve gasification and WGS reaction

Demonstration of novel spouted bed reactor

- Combination of gasification and WGS reaction
- Avoidance of ash melting
- Ash separation

Diagram of Proposed CLG Process

Avoiding the external ASU and WGS and their auxiliary power through cost effective chemical looping.

- Catalyst-Oxygen Carrier: reactivity, cost, sintering or attrition
- Heat balance
- Fuel reactor configuration

Morgantown, WV

Feasibility and Iron State of Red Mud Catalyst-OC During Reaction

Morgantown, WV

Physical Characteristics

Morgantown, WV

Why Red Mud – Abundant UK

Morgantown, WV

Catalytic Function for WGS Reaction

Time /min

T = 973 K Identical gas space velocity: -residence time=6s Inlet gas composition: 10% CO + 30\% Steam + 60%

- 10% CO + 30% Steam+60% N₂

August 10-11, 2015

Morgantown, WV

Gas Composition of CLG

-At different oxygen carrier/fuel ratios

Predicting Real Application

Promotion of gasification rate at elevated pressure

Test condition:

- (1) Fuel: Char 2.4 g
- (2) Temperature: 950 °C
- (3) Gasification agent: 50 vol% steam
- (4) Red Mud OC 100 g

Syngas product

	1 bar	4 bar
CO ₂	42.9	43.0
CO	11.4	8.3
H2	45.6	48.7
CH4	0.14	0

Cyclic Performance Evaluation

Morgantown, WV

Strategy to Avoid Agglomeration (1)

Regeneration at high excess temperature: >35 °C

Fresh OC

Agglomerate

Sintering Surface Ash-induced Agglomerate

Morgantown, WV

Strategy to Avoid Agglomeration (2)

Low steam concentration < 30%

Fresh OC

After 10 cycles

4800 15.0kV 13.7mm x30 SE(M)

Soft Agglomeration

Sintering bridge

Molten surface (x5 k & x100 k)

Morgantown, WV

Cyclic performance of catalyst-OC with CuO additives

- ✓ Better heat balance between two reactors
- Modification of existing spouted bed facility
 - ✓ On going
- Demonstration of spouted bed reactor and performance evaluation of gasifier
- Process modeling and performance evaluation
 - Sensitivity study (operation pressure, OC/fuel/steam ratio and catalyst-OC type)

TGA/DSC/DTA/MS with WV Furnace

Hitachi S-4800

Philips X'pert

Morgantown, WV

Available Facilities

Spouted Bed Reactor August 10-11, 2015

Morgantown, WV

- DOE/NETL
 - Briggs White, Heather Quedenfeld and Jenny Tennant
- CAER
 - Lisa Richburg, Jinhua Bao, and Heather Nikolic