

Coal to Desired Fuels and Chemicals

Maohong Fan

SER Professor in the Department of Chem. & Petroleum Eng. UNIVERSITY OF WYOMING

<u>mfan@uwyo.edu</u> Phone: (307) 766 5633

Maohong Fan's Research Group

UW's Clean Coal Technology Development Map

Three Sample Projects to Be Presented

- Catalytic Coal Pyrolysis and Gasification
 - Na-Fe based
- Syngas to liquids
 - Ethylene glycol
- Environmental management
 - CO₂

Sample Project 1- Catalytic Coal Gasification

- Why catalyst?
 - Increase gasification or carbon conversion rate/kinetics
 - Decrease gasification temperature
 - Improve energy efficiency
 - Increase life span of gasifier
 - Change the composition of syngas
 - Obtain desired CO:H₂ ratio
 - Decrease CH₄ concentration in syngas

Catalytic Coal Pyrolysis and Gasification Setup

7

Effect of Na Catalyst on PRB Coal Pyrolysis

- Mole ratios of different gas products from catalytic coal pyrolysis at 600 °C [coal heating rate: 10 °C /min; pyrolysis time at 600 °C: 30min; flow rate of N₂ :15 ml/min]
- Addition of Na₂CO₃ (as a catalyst) can increase
 - H_2/CH_4 ratio by ~170%
 - H_2/CO ratio by ~115%

Effect of Na Catalyst on PRB Coal Conversion (X) and Gasification Kinetics (k)

Effect of Composite Catalyst on CO Concentration in Syngas

Molar yield of CO per mole of carbon in the char vs. different loadings of Fe and temperatures

Test conditions

- Mass of DAF coal: 5 g
- H_2O flow rate: 180 ml/min
- N_2 flow rate: 4.1 ml/min
- #1:1%-Fe+3%-Na
- #2: 2%-Fe+2%-Na
- #3: 3%-Fe+1%-Na

Observations

- Increase in temperature → significant increase in CO
- Increase in Fe in composite catalyst → considerable decrease in CO

Effect of a Composite Catalyst's Composition and Temperature on H₂ Concentration in Syngas with Steam Gasification

Molar yield of H_2 per mole of carbon in the char vs. different loadings of Fe and temperatures Test conditions- Mass of coal: 5 g; #1: 1%-Fe+3%-Na; #2: 2%-Fe+2%-Na; #3: 3%-Fe+1%-Na: #4: 4%-Fe+0%-Na.

- Composite catalyst can take the advantage of two individual catalysts and overcome their challenges
- Molar yields of H₂ per mole of carbon
 - 3% Fe loading leads to the increase in H₂ production by 35% at 700 °C.

Effect of Na Catalyst on Carbon Conversion with CO₂ Gasification

Test conditions

- Gasification Temperature: 700
 °C
- Mass of DAF coal: 5 g
- CO₂ flow rate: 180 ml/min
- N₂ flow rate: 4.1 ml/min

Observations

- Addition of trona can significantly accelerate carbon conversion X (mole fraction) or coal gasification rate
- Gasifying the same amount of coal with catalyst needs
 - less time
 - a smaller gasifier

- Pure CO could be obtained
- 1,200 min is needed for gasifying the coal without presence of catalyst.
- Only 300 min is needed for gasifying the coal with the presence of catalyst.

Test conditions – Gasification temperature: 700 °C; mass of coal: 5 g; CO_2 flow rate: 180 ml/min; N_2 flow rate: 4.1 ml/min.

2015/8/19

The Mechanism of PRB Coal Gasification with Fe Catalyst: Mössbauer spectroscopy data

- During pyrolysis iron oxides are reduced to metallic iron Fe⁰, Fe₃C and higher coordination iron Feⁿ⁺
- After steam introduction Fe₃C is oxidized to Fe⁰ and Fe(O)
- The catalytic mechanism on oxidized iron layer: $Fe + H_2O \rightarrow Fe(O) + H_2$ $Fe(O) + C \rightarrow C(O) + Fe$
- $C(O) \rightarrow CO$

$$3Fe(Q)+H_2O \rightarrow Fe_3O_4+H_2$$

$$Fe_3O_4 + CO = 5Fe(O) + C$$

 $CO_2 + C \leftrightarrow 2 CO$

Sample Project 2- Catalytically Coverting Syngas to Ethylene Glycol (EG)

Syngas to ethylene glycol

Disadvantages of methyl nitrite:

- Highly flammable
- Highly explosive
- Toxic
- Being controlled in the US

Advantages of ethyl nitrite:

- Less flammable
- Non-explosive
- Less toxic
- Transportation allowed

1st Step of Syngas to EG: (CO +EN) \rightarrow DEO

• UW DEO synthesis catalyst

- 0.1% DEO production catalyst prepared at UW can perform better than 1% that prepared with conventional method.
- Cost-effectiveness of UW catalyst is 9 times or 900% better than that of conventional ones.

Integrated in-situ FTIR Based Set-up for Studying EG Reaction Mechanism

In-Situ FTIR Observation of DEO Synthesis with and without Uses of a Promoter

19

2nd Step of Syngas to EG: DMO→EG

- UW's AC based catalysts achieve higher DMO conversion and EG + MG (methyl glycolate) selectivity in lower temperature range (< 200 °C)
- UW's 20Cu-AS30-AC is the best catalyst
 - 100% CO conversion
 - 90% EG + MG

Sample Project 3- New CO₂ Capture Technologies

- Sorption based CO₂ capture technology
 - -Advantages
 - Easy in operation
 - Applicable to gases with a wide range of CO₂ concentrations
 - Absorption: for pre-combustion CO₂ capture
 - Adsorption: for flue gas with low CO₂ concentration

-Shortcoming

- Slow CO₂ desorption rates (especially for absorption based technology) → high desorption energy consumption
 - the largest obstacle for reducing overall CO₂ capture cost since about 70% of overall CCS capital is spent on CO₂ desorption step
- What to do? Using catalysis

Catalytic CO₂ Capture *set-up*

Sample Project 3- Catalytic Based CO₂ Capture *Background*

- Carbonates for CO₂ capture
 - Mechanism (reversibility of the following reaction)
 - $Na_2CO_3 + H_2O + CO_2 \rightleftharpoons 2NaHCO_3$ Or : $CO_3^{2-} + H_2O + CO_2 \leftrightarrow 2 HCO_3^{-}$
 - Advantages
 - Stoichiometric CO_2 -H₂O ratio: almost equal to that in actual flue gas
 - Na₂CO₃: inexpensive, stable, easily available
 - Disadvantage
 - More difficult than amines based CO_2 capture technology in CO_2 desorption or sorbent regeneration step 23

Catalytic Based CO₂ Capture - Inorganic

CO₂ Desorption Rate Constants (k) with and without Uses of a Catalyst

• Test Conditions

- Mass of spent CO₂ sorbent (NaHCO₃):50-100 mg
- NaHCO₃/Catalyst (called NHF)
- N_2 flow rate: 100 mL/min

Observations

- Rate constants [k (min⁻¹)] increased significantly at the same temperature due to use of the catalyst (e.g., k_{pure-} $NaHCO3 = 0.005 \text{ min}^{-1}$, while k $_{90\%}$ $wt.\%NHF = 0.19 \text{ min}^{-1}$, k $_{50\% \text{ wt}.\%NHF} =$ 0.20 min⁻¹, k $_{10\% \text{ wt}.\%NHF} = 0.06 \text{ min}^{-1}$ at 100 °C)
 - CO₂ desorbs much faster due to use of catalyst
 - Reduce operating and capital costs

Sample	Temperature (°C)	m	k (min ⁻¹)	R ²
Pure NaHCO ₃	100	0.9	0.005	0.9992
	120	1.0	0.02	1.0000
	140	1.2	0.06	0.9991
	150	1.2	0.13	0.9991
	160	1.2	0.29	0.9999
	100	0.7	0.19	0.9996
90 wt.% NHF	110	0.6	0.25	0.9994
	120	0.4	0.49	0.9995
	130	0.4	0.89	0.9990
	140	0.3	1.32	0.9975
50 wt.% NHF	100	0.6	0.20	0.9989
	110	0.4	0.32	0.9989
	120	0.1	0.46	0.9994
	130	0.1	0.59	0.9997
	140	0.1	0.84	0.9995
	100	0.5	0.06	0.9997
	110	0.5	0.13	0.9998
20 wt.% NHF	120	0.5	0.23	0.9998
	130	0.5	0.35	0.9998
	140	0.5	0.50	0.9998

Catalytic Based CO₂ Capture - Inorganic

Arrhenius Parameters

Sample	R ²	A (min ⁻¹)	E _A (kJ/mol)
Pure NaHCO ₃	0.9988	$9.66 \times 10^9 \pm 3.16 \times 10^8$	86 ± 2.5
90 wt.% NHF	0.9529	$2.65 \times 10^8 \pm 2.43 \times 10^7$	64 ± 5.8
50 wt.% NHF	0.9493	$4.86 \times 10^5 \pm 4.06 \times 10^4$	44 ± 3.5
20 wt.% NHF	0.9899	$4.02 \times 10^8 \pm 1.72 \times 10^7$	69 ± 2.8

a – catalyst

 Reduction in desorption activation energy also implies better adsorption

$$\bullet \quad \Delta H_R = E_{A,R} - E_{A,-R}$$

Sample Project 4: Naphthalene synthesis

Thanks to

