Production of High-Purity O₂ via Membrane Contactor with Oxygen Carrier Solutions

DOE Contract No. DE-FE0024080

Shiguang Li, James S. Zhou, Howard Meyer, Gas Technology Institute (GTI)

Miao Yu, University of South Carolina (USC)

2015 Gasification Systems and Coal & Coal-Biomass To Liquids Workshop

August 10, 2015

Key personnel

gti.

- <u>Not-for-profit</u> research company, providing energy and natural gas solutions to the industry since 1941
- <u>Facilities</u>: 18 acre campus near Chicago, 28 specialized labs

PI: Dr. Shiguang Li

Dr. James Zhou

Mr. Howard Meyer

- <u>Co-educational research university</u> located in Columbia, South Carolina
- Prof. Yu Group: expertise in thin films, coatings, membranes, liquid absorption and transport mechanisms

co-PI: Dr. Miao Yu Dr. Mahdi

Dr. Mahdi Fathizadeh

Our inspiration...Red Blood Cell

We use *membrane contactor* to realize our concept

What is a membrane contactor?

- <u>High</u> surface area membrane device that <u>facilitates</u> mass transfer
- Gas on one side, liquid on other side

- Membrane does not wet out in contact with liquid
- <u>Separation mechanism</u>: O₂ permeates through membrane, reacts with the solvent; N₂ does not react and has low solubility in solvent

Process description

Application in the Integrated Gasification Combined Cycles (IGCC)

Project objective and goal

<u>Objective</u>: achieve proof of concept using hollow fiber membrane contactor (HFMC) with an O_2 carrier solution as solvent and air as feed to produce greater than 95% purity of O_2

<u>Goal</u>: achieve O_2 production rate with a mass transfer coefficient ≥ 1.0 (sec)⁻¹ and O_2 purity $\ge 95\%$

Membrane contactor vs. conventional contactors

Gas-liquid contactor	Volumetric mass transfer Coefficient ((sec) ⁻¹)
Packed column (Countercurrent)	0.0004 - 0.07
Bubble column (Agitated)	0.003 - 0.04
Spray column	0.0007 – 0.075
Our goal for membrane contactor	1.0

Our current progress

PEI-Co = poly(ethyleneimine)-cobalt

Loading on oxygen carrier, ml (STP)/L solution		Solubi wate (STI solu	ility in r, ml P)/L tion	To capac (STI solu	tal ity, ml P)/L tion	Product O ₂ purity, %
O ₂	N_2	O ₂	N_2	O ₂	N_2	
1,000	0	2.9	5.3	1,003	5.3	99.5

PEI/Co ratio	mL O ₂ /L solution
20	590
15	780
10	1,100
7.5	1,300
5	1,500

Stage of the current project and beyond the project

Current project

- We are developing a promising O₂ production process using HFMC with O₂ carrier solution
- O₂ carrier solution developed and showed high O₂ absorption capacity
- >95% purity of O₂ production proof of concept in progress
- Techno-economic analysis (TEA) based on experimental data

Beyond the project

- PEI-Co solution optimization: longer lifetime, fast bonding and desorption kinetics, desired physical properties, etc.
- HFMC operation condition optimization towards high production rate
- Continuous >95% O₂ production in HFMC

PEEK membrane under development

Membrane	Packing density	O ₂ permeance
geometry	(m²/m³)	(GPU)
Hollow fiber	2,200	1,000

Mature air separation technologies and comparison

Technology	O ₂ purity limit (vol.%)	Largest O ₂ flow rate (Ton O ₂ /day)
Cryogenic distillation	99+	>3,000
Pressure swing adsorption (PSA)	95	<350
Conventional gas separation membranes	40	<20

Advantages of our technology compared to cryogenic distillation

	Capital Equipment Savings		Operating Cost Savings
•	Simple materials of construction	•	Compression to operating conditions only
•	Reduction in compression and heat		for O_2 fraction of air
	exchange equipment	•	Near ambient temperature and pressure
•	Near atmospheric pressure operations	•	Low binding energy for O_2 solvent

- Estimated O₂ purity >95%
- Projected cost including capital, operating, and energy use is ~ \$19.97/ton O₂, lower than cryogenic distillation (~ \$35.80/ton O₂)
- Can be easily scaled

Acknowledgements

Financial support

DOE NETL Darryl T. Shockley