the Energy to Lead

ADVANCED GASIFIER AND WATER GAS SHIFT TECHNOLOGIES FOR LOW COST COAL CONVERSION TO HIGH HYDROGEN SYNGAS

DOE/NETL Cooperative Agreement DE-FE0023577

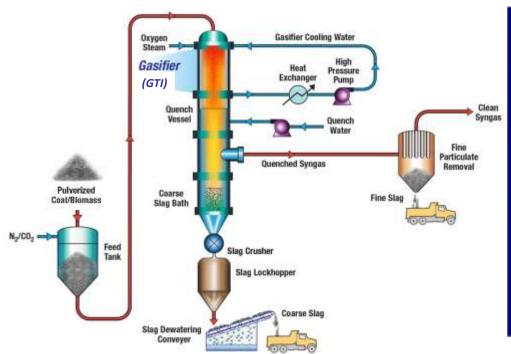
> Don Stevenson, Executive Director

 DOE Gasification and C&CBTL Workshop Morgantown, WV August 10, 2015

AGWGST Program Team

- **gti** > Gas Technology Institute Compact gasifier technology

- >RTI International
 - Advanced Water Gas Shift reactor technology


- Coanda > Coanda Research & Development
 - Cold flow simulation of gasifier quench zone

Nexant > Nexant, Inc.

 Techno-economic analysis showing integrated benefits of GTI, RTI technologies

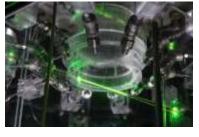
Compact Gasifier Overview

Compact Gasifier Attributes:

- Dry feed for high efficiency, feedstock flexibility
- Rapid mix injector + plug flow reactor for 90% smaller volume
- Advanced cooling design for robust thermal margins, long component life
- Eliminates black water system
- Long MTBF, short MTTR for high availability

Benefits:

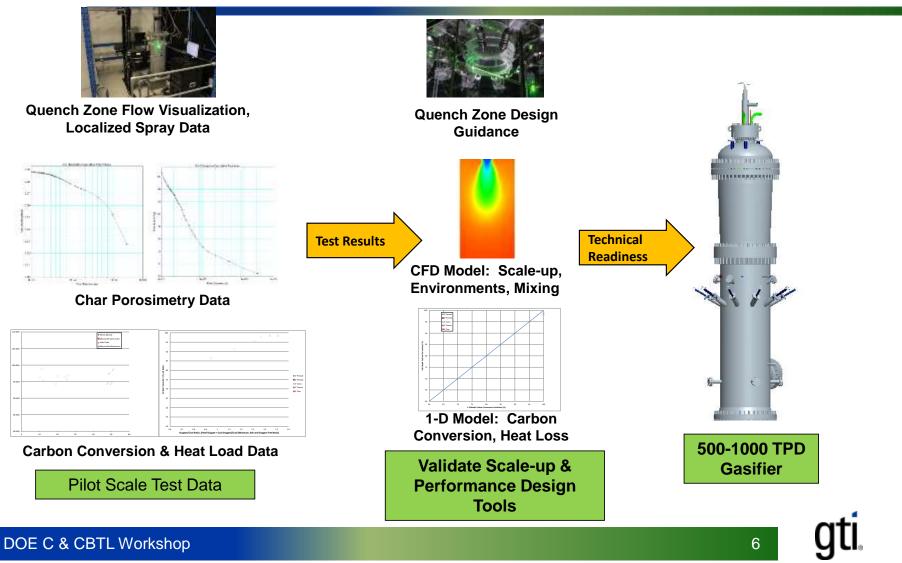
- High CGE: 2-4% > than other dry feed, 7%-9% > than slurry
- Lower capex: ~15-25% plant cost reduction vs. lowest cost entrained flow tech
- 15%-25% reduction in cost of product (power, chemicals, liquids)



Principles of Operation

- > Dry feed system enables use of low rank coals
- > Multi-element feed splitter
 - Uniform splitting assures good O₂/coal ratio at each element
 - Establishes "plug flow" to minimize recirculation, accelerate gasification
- > Advanced cooled liner design
 - Keeps metal temperatures < 550°C for long life
 - High thermal margins enables operation on coals with high ash fusion temperature (AFT)
- > Rapid spray quench
 - Flexibility to provide dry syngas from 350°C to 800°C
 - High degree of flexibility for process optimization

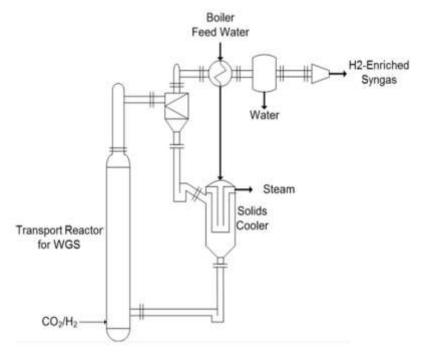
Gasifier Development Needs


- > Quench Zone Modeling
 - Slag blockage, misdirected syngas flow
- > Highly Reactive Feedstocks
 - Potential for aggressive thermal environments near burner
- > High AFT + High Ash Coals
 - AFT >1500°C, >25% ash
 - Significant limitation for existing technologies
- > Carbon Conversion Kinetics
 - Need better data to address final ~5% carbon conversion
 - Study porosimetry, surface area per unit mass as function of conversion

Test Program Matures Technology to Readiness for 500-1000 TPD Demonstration

Advanced Water Gas Shift Technology

Primary reaction pathway is the Water Gas Shift (WGS) reaction


 $CO + H_2O = CO_2 + H_2$ $\Delta H = -41 \text{ kJ/mol}$

Challenges

- Proactive reactor temperature control required
 - WGS reaction is exothermic
 - Coal-derived syngas has high CO concentration
- WGS reaction is equilibrium limited
 - Lower temperatures maximize H₂ production
 - High-activity lower-temperature catalysts are poisoned by syngas contaminants

Conventional solutions

- Large additions of steam
- Multiple reactor stage with inter-stage cooling

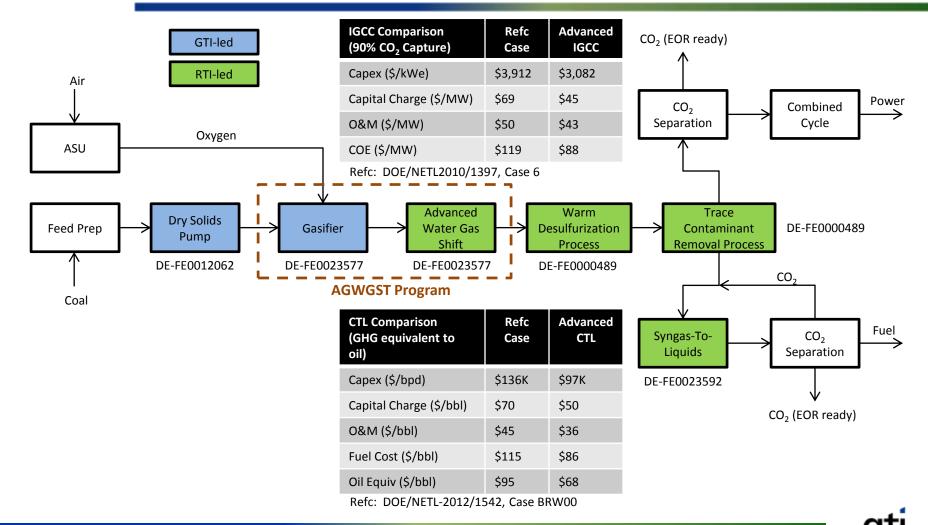
Proposed solution

- Leveraging commercial FCC technologies (transport reactor with solids cooler)
- RTI's expertise in developing attrition-resistant fluid-bed materials

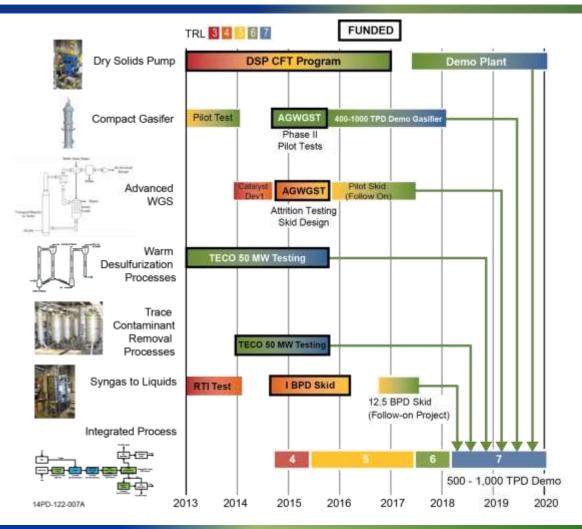
AWGS Technology Road Map

Critical technical challenges

- Development of attrition-resistant WGS catalyst formulation
- Successfully leveraging existing commercial technologies


Stage	Research Objectives	Status
Technical feasibility	 Demonstrate fluidizable WGS catalysts that possess attrition resistance and WGS activity. Perform preliminary techno-economic analysis to assess cost and efficiency benefits 	Completed by 12/31/2014 (DE-FE0012066)
Catalyst Development	 Optimize fluidizable WGS catalyst for attrition resistance and WGS activity Complete lab-scale testing of catalyst performance using simulated syngas mixtures at typical operating conditions to determine catalytic performance (activity, stability and selectivity) Update preliminary TEA to assess cost and efficiency benefits 	In Progress (DE-FE0023577)
Pilot-plant Testing	 Demonstrate performance of fluidized-bed catalyst in a pilot-scale transport reactor with a solids cooler using real coal-derived syngas. 	Optional Task (DE-FE0023577)
Demonstration	 Demonstrate expected commercial performance in demonstration-scale equipment with real commercial syngas and a commercially produced catalyst. 	Future project

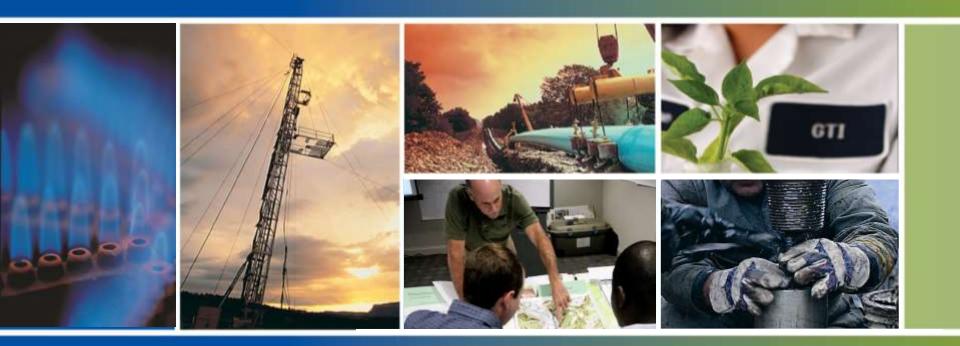
Integration with Balance of Plant


- Standard coal pulverization equipment
- Ultra-dense phase feed system, fed by conventional lock hoppers or Dry Solids Pump
- Standard oxygen, steam supply to gasifier
- Reactant supply skid for high pressure torch igniter (GTI supplied equipment)
- High pressure BFW in closed loop gasifier cooling system
- Recycled process condensate for quench
- Standard slag bath process
- Cyclone/candle filters for fines removal (dry recovery)

Integration With Other DOE Projects – 25% Reduction in Cost of Products

DOE C & CBTL Workshop

Technologies on Path for 2020 FOAK Commercially Relevant Demo


DOE C & CBTL Workshop

Conclusion

- GTI and RTI technologies offer potential for >25% reduction in cost of power, fuels
- GTI compact gasifier is ready for demonstration plant scale up after program
- RTI AWGS technology ready for pilot plant test after program
- Techno-economic analysis will assess integrated benefits of these technologies
- Technologies on track for 2020 demonstration

Turning Raw Technology into Practical Solutions

don.stevenson@gastechnology.org

www.gastechnology.org | @gastechnology

DOE C & CBTL Workshop

qti