

Program manager Dr. Arun Bose E-mail: <u>arun.bose@netl.doe.gov</u> Contract: DE-SC0010151

A Cost-Effective Oxygen Separation System Based on Open Gradient Magnetic Field by Polymer Beads Dr. Raghuvir Singh, ITN Energy Systems

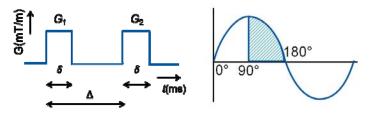
August 10, 2015

IN

Technology

Description

- Cost effective system for oxygen separation from air using a precise application of pulsed magnetic fields under multiple gradients on ambient air flowing through a chamber of polymer coated magnetic beads
- Magnet activates oxygen's paramagnetic properties to retain oxygen while other gases are released, allowing oxygen to be captured by timed valve system


Target Improvements

- Lower cost than currently-used cryogenic separation systems (12% COE and \$11-13/ton reduction)
- Continuous high yield oxygen separation from air (99% pure O₂) for feeding a coal gasification system for production of Syngas for industry applications.

IN

Technology

- Magnetic field gradient interaction creates body force on oxygen
- Traps oxygen while allowing nitrogen to continue freely
- Square wave field switching enhances the interaction
- Enriched O₂ is drawn (vacuum pump) from the domain during off state
- Duty cycle reduces output relative to flow rate, but improves enrichment rate

Gradient pulses can be simply turned **on** and **off** like high-power RF pulses (rectangular pulses) or they can be shaped so that they turn **on and off** more gradually.

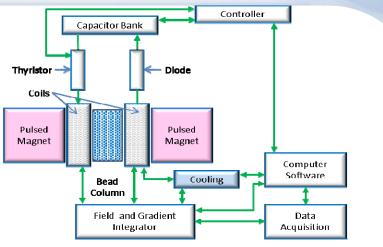
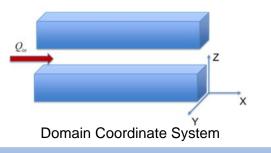
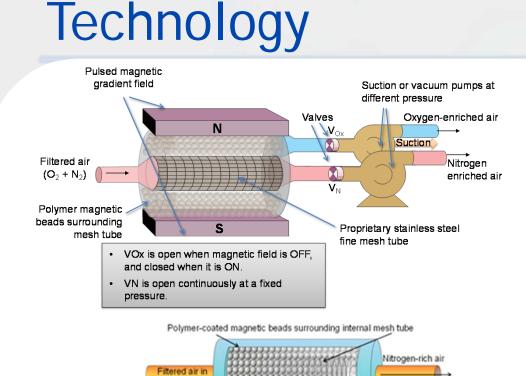
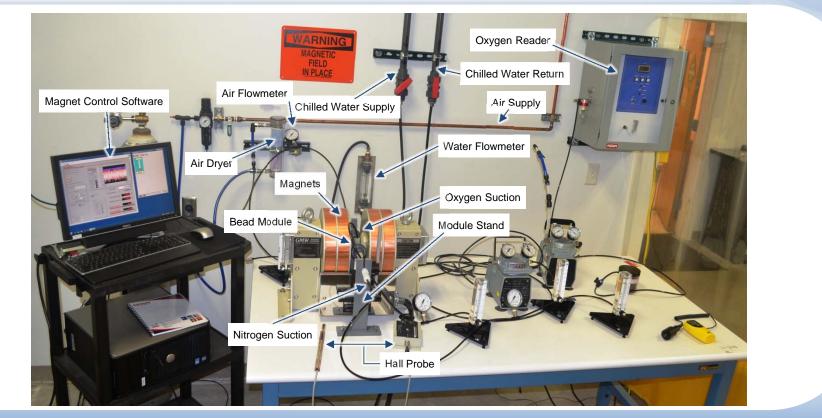




Diagram of Pulsed-Magnetic Field Gradient

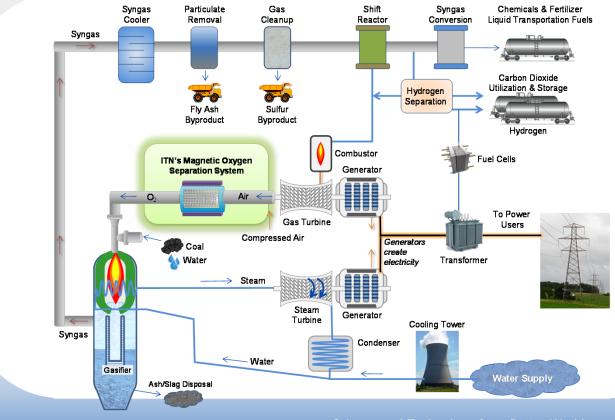
IN

- Beads module is placed between the magnet's poles with magnetic field (B₀), and the magnetic moments of these beads align with the direction of the field
- Computer controls on/off pulses to change magnetic field on predefined intervals
- When field is <u>on</u>, the magnetized beads *hold* oxygen and alter their alignment towards the column
- When the field is <u>off</u>, beads return to the original alignment, and release oxygen



Proprietary

... Science and Technology for a Better World


Enriched oxygen

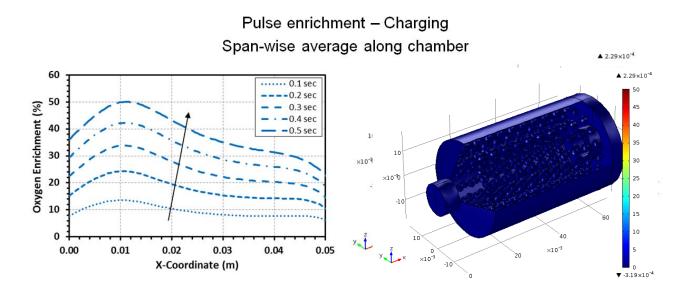
Project Configuration

Proprietary

Integration with Gasification Plant

ITN's magnetic oxygen separation system goes inline with air feed to provide pure oxygen to gasifier, dramatically increasing process efficiency

Proprietary


Ancillary R and D Needed

- Additional work to scale up technology from lab to industrial size
- Increase magnet pulse gradient power
- Cheaper magnet technology would lower system cost
- Minor engineering required to integrate system into gasification plant air intake

Goals for Commercial Viability

- Work with industry leaders in commercial gas production to establish marketing and logistical pipelines
- Obtain funding for development of large-scale devices and infrastructure for pilot production
- Collaborate with Industrial Partner to obtain funding for volume production and distribution
- Targeted cost-effective oxygen production

Maturity & Development Remaining

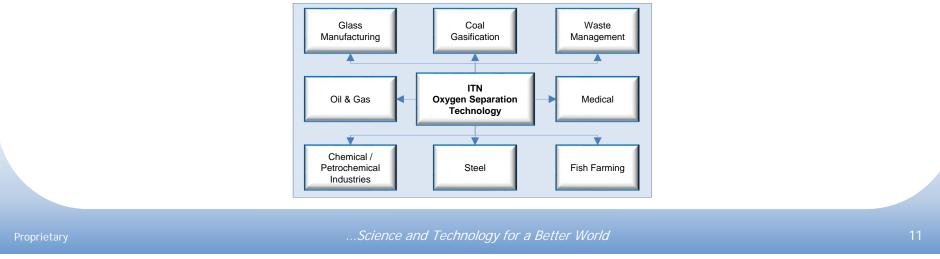
	Peak Oxygen Enrichment (%)										
	0.1 LPM			0.5 LPM			1.0 LPM			\uparrow Frequency, \downarrow %	↑Flow Rate. ↓%
-	1.0 ATM	1.5 ATM	2.0 ATM	1.0 ATM	1.5 ATM	2.0 ATM	1.0 ATM	1.5 ATM	2.0 ATM	Triequency, W70	THOW Nate, \$70
1.0 T	5.3	12.1	16.7	2.6	6.0	8.2	1.1	2.5	3.4	个Mag Field, 个%	↑Pressure, ↑%
2.0 T	10.5	24.2	33.3	5.2	12.0	16.5	2.1	4.9	6.8	Tring Field, 170	111033010, 170
3.0 T	15.8	36.3	50.0	7.8	18.0	24.7	3.2	7.4	10.2		

... Science and Technology for a Better World

Proprietary

Commercial Benefits

- Replace expensive cryogenic oxygen production processes throughout multiple industries
- Save energy by increasing efficiency of coal plants
 Technology Status Eco. Range (vol %)
- Less complex
- Compact system
- Field deployable


Technology	Status	Eco. Range (sTPD)	Purity limit (vol.%)	Byproduct Capability	Start-up Time
Cryogenic	mature	>20	99+	excellent	Hours
Membrane	Semi-mature	<20	~40	poor	minutes
ITM	developing	unknown	99+	poor	hours
Adsorption	Semi-mature	<150	95	poor	minutes
ITN's Magnetic	developing	undetermined	>99	good	seconds

Commercial Benefits

Huge potential application for use of oxygen in primary metals production, chemicals, and clay, glass, rocket fuel, and concrete products, petroleum refineries, welding, and other industries.

Magnetic Air Separation Cost Analysis

- Magnetic power consumption is significantly more energy efficient than Cryogenic and VSA technologies
- 95% of operational costs of cryogenic ASUs come from compressor work
- Capital costs of magnetic ASU design are relatively small
- Maintenance cost is lower, fewer moving parts
- Goal is to operate magnetic air separating unit close to atmospheric pressure to reduce compressor costs.

Initial Calculations

	Magnetic	VSA	Cryogenic
Operating Pressure (atm)	1.00	1.00	8.0
Nominal O ₂ Gen (mTPD)	1.00	10	100
Compressor/Blower Work (kW)	0.04	280	1230
Electromagnet Power (kW)	1.65	-	-
Specific Energy (kWh/ton)	40.7	672	295

Oxgen Separation Project Team

ITN Energy Systems

- Raghuvir Singh, Ph.D. (Principal Investigator)
- Scott Kato
- James Mickle
- B.J. Green

Texas A&M University

 Prof. Partha Mukherjee, Energy and Transport Science Laboratory, Department of Mechanical Engineering

Other Contacts

- Potential Industry Partners: Praxair, Air Liquide
- Commercialization Support: Dawnbreaker