Breakthrough Hybrid CTL Process Integrating Advanced Technologies for Coal Gasification, NG Partial Oxidation, Warm Syngas Cleanup and Syngas-to-Jet Fuel

DOE/NELT Cooperative Agreement DE-FE0023592

John Carpenter
August 10, 2015
Overview

Breakthrough hybrid coal-to-liquids process integrating several emerging technologies and adapting some commercially available technologies to produce cost-competitive jet fuel.

- AR\GTI Compact Gasification System
- AR\GTI Partial Oxidation Unit
- RTI Warm Syngas Cleanup
- Syngas-to-Liquid System
- Axens Hydroprocessing Technology

<table>
<thead>
<tr>
<th>Technology</th>
<th>Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced gasification with dry feed (AR)</td>
<td>>15%</td>
</tr>
<tr>
<td></td>
<td>7-10%</td>
</tr>
<tr>
<td></td>
<td>(Cold gas)</td>
</tr>
<tr>
<td>Warm syngas Cleanup (RTI)</td>
<td>5-10%</td>
</tr>
<tr>
<td></td>
<td>>3% (HHV)</td>
</tr>
<tr>
<td>Cumulative Impact</td>
<td>20-25%</td>
</tr>
<tr>
<td></td>
<td>7-8% (HHV)</td>
</tr>
</tbody>
</table>

Development Team
- RTI International
- GTI
- Aerojet Rocketdyne (AR)
1. Advance the constituent technologies of the hybrid process to TRL 5-7:
 • Demonstrate integrated operation of AR\GTI’s gasifier and POX units with RTI’s STL
 process at pilot-scale (~1 bbl/day).
 • Demonstrate the jet-fuel intermediate generated during this integrated pilot-scale test is
 suitable for upgrading into jet-fuel using commercial refinery processes.

2. Demonstrate the feasibility of the proposed hybrid process to produce cost
 competitive jet fuel and lower GHG emissions.

3. Develop a commercialization plan for commercial deployment within the next 5 to
 15 years.
Aerojet Rocketdyne\GTI Compact Gasification System

Gasifier → Syngas Cleanup

Coal → Ash

Air / Oxygen → Sulfur

Natural Gas → Partial Oxidizer → Water-Gas-Shift

Steam / Boiler Feed Water

Water Separation → Syngas-to-Liquids

CO2 Separation → Jet Fuel Upgrading

Jet Fuel

CO2

CO2
Compact Gasification System

- 90% reduction in gasifier volume
- Cold gas efficiency improvements
 - 7% - 10% versus water slurry feeders
 - 2% - 4% versus dry feed systems
- Gasifier surface temperatures of 1000°F
 - >2 year life injectors (< 4 months GE injectors)
 - >10 year life cooling liner (1-3 year for refractory)
- Dry ash recovery eliminates black water collection system and waste water treatment requirements.
 - >15% lower cost of electricity for IGGC
 - >25% lower cost for hydrogen

PWR’s Dry Solid Pump

- 32 GWh/y reduction in lock hopper power requirements (3000 tpd plant)
- Demonstrated performance with both coal and coal/biomass mixtures
Aerojet Rocketdyne\GTI Partial Oxidation Unit
Aerojet Rocketdyne\GTI Partial Oxidation Unit

• Developed with a focus on distributed gas-to-liquid production (~1,000 BPD)
• 80 hours of pilot scale (~450 MSCF/day NG feed) POX unit testing was performed in 2013
 • Validated performance and design approach
 • Demonstrated the ability to directly yield syngas with H_2:CO molar ratios near 2.0
 • Potential to eliminate the need for downstream water-gas-shift reactors
• Designed and fabricated a prototype POX unit
 • Incorporating burner element and cooled liner designs
 • Support testing of the POX unit with natural gas using either oxygen or air.
 • Designed to enable recycle of byproduct and/or wastewater streams to the unit
• POX technology offers the potential to reduce GTL plant capital cost by 10-15%.
RTI Warm Syngas Cleanup Technology Platform

Coal -> Gasifier -> Water-Gas-Shift -> Partial Oxidizer -> Syngas Cleanup -> Sulfur

Air / Oxygen

Natural Gas

Ash

Water-Gas-Shift

Steam / Boiler

Feed Water

Water Separation

CO2 Separation

Syngas-to-Liquids

Jet Fuel Upgrading

Jet Fuel

CO2
RTI Warm Syngas Cleanup Technology Platform

- **Flexible modular approach meets:**
 - New EPA electric power generation specifications
 - Industrial production specifications
- Systems tested on actual coal-based syngas
- 50-MWe demo project with carbon capture at Tampa Electric’s Polk 1 IGCC site

- Enhance overall process efficiency and lower costs by operating at temperatures of 250°C to 600°C with small footprints!
- Pressure independent
- Effective for all forms of sulfur
- Fully compatible with conventional and warm CO₂ capture

RTI PILOT PLANT TEST UNITS AT EASTMAN COAL GASIFICATION PLANT
Syngas-to-Liquids System

- **Coal** → **Gasifier**
- **Air / Oxygen** → **Partial Oxidizer**
- **Natural Gas** → **Gasifier**
- **Coal** → **Partial Oxidizer**
- **Gasifier** → **Syngas Cleanup**
- **Partial Oxidizer** → **Syngas Cleanup**
- **Syngas Cleanup** → **Ash**
- **Syngas Cleanup** → **Sulfur**
- **Water-Gas-Shift** → **Syngas Cleanup**
- **Steam / Boiler Feed Water** → **Syngas Cleanup**
- **Syngas Cleanup** → **Syngas-to-Liquids**
- **Syngas-to-Liquids** → **CO2 Separation**
- **CO2 Separation** → **Jet Fuel Upgrading**
- **Jet Fuel Upgrading** → **Jet Fuel**

Processes:
- **Water Separation**
- **CO2 Separation**
- **Syngas-to-Liquids**
- **Jet Fuel Upgrading**
RTI is developing an STL process with the following features:

- Produces a targeted narrow carbon range distribution of fuel products
- Achieves heat management through reduced reactant partial pressure
- Utilizes commercial and emerging F-T catalyst compositions

Single pass CO conversion efficiencies of over 60% with selectivity to C$_8$-C$_{18}$ liquid products of 65% have been achieved.
1BPD Pilot-Scale STL System

System to demonstrate STL technology with relevant syngas from gasifier and POX systems.
1 BPD Pilot Plant Testing with Syngas at GTI

GTI’s Gasification Pilot Plant
Axens Hydroprocessing Technology

Coal → Gasifier → Syngas Cleanup
 ↓ ↓
 Ash Sulfur

Air / Oxygen → Partial Oxidizer → Water-Gas-Shift
 ↓ ↓
 Steam / Boiler Feed Water

Syngas Cleanup

Water Separation → Syngas-to-Liquids → CO2 Separation → Jet Fuel Upgrading

Jet Fuel

CO2
Axens’ technologies have been developed to ensure:

- Minimum production costs by careful balancing of the hydrotreatment reaction pathway (hydro-isomerization vs hydro-cracking).
- Minimum impact of CO/CO₂ inhibition
- Fine tuning of product cold flow properties
- Superior fuel stability in operation

<table>
<thead>
<tr>
<th>Property</th>
<th>Typical Vegan Jet Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density, kg/m³</td>
<td>766</td>
</tr>
<tr>
<td>D86 T10, °C</td>
<td>169</td>
</tr>
<tr>
<td>D86 FBP °C</td>
<td>272</td>
</tr>
<tr>
<td>Freezing point °C</td>
<td>-57</td>
</tr>
<tr>
<td>Flash point °C</td>
<td>68</td>
</tr>
<tr>
<td>BRW00</td>
<td>Case A: Advanced CTL (no POX)</td>
</tr>
<tr>
<td>-------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>Total Owners Cost $/bpd</td>
<td>$135,640</td>
</tr>
<tr>
<td>Capital Charge $/bbl</td>
<td>$70.00</td>
</tr>
<tr>
<td>O&M $/bbl</td>
<td>$44.50</td>
</tr>
<tr>
<td>Plant Gate Fuel Cost $/bbl</td>
<td>$114.50</td>
</tr>
<tr>
<td>Cost of Oil Equivalent $/bbl</td>
<td>$95.40</td>
</tr>
</tbody>
</table>

The hybrid CTL process provides potential savings for both capital and operational costs that can remain cost-competitive with petroleum-based jet fuel and when crude oil prices are at or above $70/bbl.
Reduction in total generated CO$_2$ as a function of coal in the total feedstock calculated using AR’s coal gasifier and partial oxidation technologies.

At a 51% coal, 49% natural gas split, only 60.5% (vs. 84% for conventional CTL) of the non-fuel-bound carbon is required to be captured in order to meet EISA 2007 §526 requirements for our hybrid CTL process.
• Leverages ongoing parallel activities in other DOE and commercialization projects on many of the technology components

• Furthers the TRLs of the less mature STL and partial oxidation technologies

All of the key technologies should be ready for integrated hybrid CTL demonstration testing, and within 3-5 years of full commercial readiness, by project end.
Acknowledgements

RTI International
Dr. Raghubir Gupta
Dr. Brian Turk
Dr. Jason Norman
Dr. Marty Lail
Michael Carpenter

DOE\NETL
Diane Madden

GTI
Andrew Kramer
Rachid Slimane
Patrick Bishop

Aerojet Rocketdyne
Steve Fusselman
Leo Gard

Contact Information:
Dr. John Carpenter
919.541.6784
jcarpenter@rti.org