

AT DARTMOUTH

Intermetallic Strengthened Alumina-Forming Austenitic Steels for Coal-Fired Power Systems

<u>Bin Hu</u>, Ian Baker

Thayer School of Engineering, Dartmouth College, Hanover, NH 03755

DOE grant DE-FE0008857

Acknowledgement

- Dr. Charles Daghlian
- Ms Geneva Trotter
- Dr. Yukinori Yamamoto
- Dr. Michael Brady
- Dr. Michael Miller
- Dr. Si Chen
- Dr. Zhonghou Cai
- Funded by the U.S. Department of Energy NETL Award DEFG2612FE0008857

Outline

- Introduction
 - Motivation
 - Background
- Results and Discussion
 - Microstructural analysis
 - Thermo-mechanical treatments
 - SEM & TEM characterization
 - XRD analysis
 - Room temperature tensile tests
 - High temperature tensile tests
- Summary

New Materials for High Temperature Applications

- Motivation: Develop materials which can be used at higher temperature (>700 °C) and pressure (>100 MPa) to enhance efficiency (>50 %) and reduce CO₂ emissions in fossil fired boiler/steam turbine power plants
- Solutions:
 - Ni-Base Superalloys: too costly
 - FeCrAl alloys: bcc structure, weak >500 °C
 - Al₂O₃ coatings or surface treatments
 - Alumina-Forming Austenitic Steels
 - Combination of creep and oxidation resistance
 - Lower cost (Lower nickel content)

www.siemens.com

Yamamoto, Y., et al.: Science, 2007, vol. 316(5823), pp. 433–36. Yamamoto, Y., et al., Metallurgical and Materials Transactions A, 2011. 42(4): p. 922-931.

86

- Combination of good oxidation & creep resistance
 - Oxidation resistance achieved by the formation of protective, external alumina scale. (~3 wt.% AI)
 - f.c.c. matrix with intermetallic strengthening (Ni₃Al etc.)

Fe-14Cr-20Ni-0.95Nb-2.5Al-2.5Mo wt. % base alloy (initial developed AFA)

BSE image after 72 hours of oxidation at 800°C in air

Fe-14Cr-32Ni-3Nb-3Al-2Ti wt.% base alloy (recent developed AFA)

TEM BF images of the alloys and SAD pattern

Yamamoto, Y., et al.: Science, 2007, vol. 316(5823), pp. 433–36. Yamamoto, Y., et al., Scripta Materialia, 2013, 69(11–12), P.816–819.

Oxidation Resistance and Creep Performance of AFA Steels

- Alumina formation in AFA alloys
 - Others: Ti content, C and B addition

322CB: Fe–14Cr–32Ni–3Nb–3Al–2Ti-0.27Zr-0.14Si (wt.%) **41Z**: Fe–14Cr–32Ni–3Nb–4Al–1Ti -0.27Zr-0.12Si (wt.%)

A286: Fe-14Cr-25Ni-2Ti-0.15Al (wt.%)

• The best alloy has >7 times longer creep life than A286

Cyclic oxidation test results at 800 °C in 10% water vapor

creep-rupture curves at 750 °C and 100 MPa.

Yamamoto, Y., et al., Scripta Materialia, 2013, 69(11–12), P.816–819.

BSE Image and EDS Results of DAFA29

- DAFA29: Fe-14Cr-32Ni-3Nb-3Al-2Ti-0.3Zr-0.15Si-0.1C-0.01B (wt.%) (as-hot-rolled)
 - Nb enrich precipitates and grain size ~40 μm

BF&SAD of Precipitates in DAFA29

- DAFA29: Fe-14Cr-32Ni-3Nb-3Al-2Ti-0.3Zr-0.15Si-0.1C-0.01B (wt.%) (as-hot-rolled)
 - Fe_2Nb Laves phase precipitates + $L1_2$ precipitates in f.c.c. matrix

Thermo-mechanical Treatments (TMT) Procedures

DAFA29: Fe-14Cr-32Ni-3Nb-3Al-2Ti-0.3Zr-0.15Si-0.1C-0.01B (wt.%) (recent developed)

- Cold rolling 90 % thickness reduction (~4.5 % reduction per pass)
 - Enhance the creep properties
 - Introduce dislocations which will act as nucleation sites for fine precipitates

The Effects of Cold Rolling on The Microstructures of TMT DAFA29

1867

The Effects of Cold Rolling on The Microstructures of TMT DAFA29

2 µm

Synchrotron XRD Results

Lattice misfit of L1₂ phase with f.c.c. matrix is calculated to be only ~0.28% for both treatments

Cross-Sections and Fracture Surfaces for Samples Treated by TMT Methods

YS: 800 MPa Elongation: 5.1 %

240 h YS: 750 MPa Elongation: 6.2 %

240 h YS: 760 MPa Elongation: 8.0 %

240 h YS: 660 MPa Elongation: 1.0 %

Stacking Faults on Grain Boundaries Laves Phase Precipitates

21

Stress Versus Temperature for as-received and TMT DAFA29

Summary

- A solutionizing anneal at 1200°C followed by cold rolling and annealing at 800°C can be used to generate a finer-scale and more uniform distribution of Laves phase precipitates.
- Cold rolling produces a high density of dislocations, which act as nucleation sites for Laves phase, B2, and L1₂ precipitates
- Nanocrystalline steels processed through 90% cold rolling exhibit a dramatic increase in yield strength up to 1280 MPa at RT. The TMT alloys loss stress at 600 -700°C.
- The yield strength of TMT AFA steels exhibits a Hall-Petch relationship with a large value for σ_0 that likely arises from precipitate strengthening (σ_{ppt}).
- The high temperature strength of both as-received and TMT DAFA29 are strain rate dependent at 700 °C

Future Work

- Continue high temperature tensile tests
 - Tests at different temperatures (600-800 °C)
 - Fracture behavior analysis
- Creep tests of TMT DAFA29
 - Study the creep mechanisms for as-received D29
 - Characterize the deformed creep samples
 - Determine dislocation/precipitate interactions

