

Investigation of "Smart Parts" with Embedded Sensors for Energy System Applications

Jose A. Gonzalez Yirong Lin, Ryan Wicker, Ahsan Choudhuri

THE UNIVERSITY OF TEXAS AT EL PASO

1/36

Introduction and Background

Objectives

Technical Approach

Results

Summary

Given Future Work

Motivation

- Highly efficient and environmentally benign power and fuel systems require:
 - Critical Sensing in modern power plants and energy systems
 - Higher efficiencies in energy conversion
 - Lower emission for near-zero emission power plants

U.S. 2013 Electricity Generation By Type

Enhanced material systems safety

04-30-2015

J. Gonzalez– DOE NETL – Smart Parts

- Harsh high temperature conditions are common to the efficient conversion of fuels and processes for environmental control
- Monitoring/estimating harsh conditions in real time is needed for high system performance and assessing reliability

Gasifiers

- Up to 1600°C
- Up to 1000 PSI
- Erosive, corrosive, highly reducing

Combustion Turbines

- Up to 1350°C
- Pressure ratios of 30:1
- Thermal shock, highly oxidative
- Complex geometries

State-of-the-Art

- Integrated thermocouples bonded to turbine blades
- Temperature measurement enabled
- Signal is sensitive to harsh environments
- Up to 1400 °C for short time

Overview and Rationale

- "Smart parts" with embedded sensor
 - Built-in monitoring capability
 - Accurate sensing at desired location
 - No change required post fabrication
 - Realized by 3D printing technology

Scope of Work

- Design and fabricate "smart parts" with embedded sensors
 - EBM 3D printing technique for fabrication of "smart parts"
 - Piezoceramic sensors for temperature, strain, pressure, and structural health conditions
- Evaluate the sensing capability of the "smart part" in realistic energy systems

Objectives

- Objective 1: Fabricate energy system related components with embedded sensors
 - Fabrication & evaluation of components without sensor by Electron-Beam Melting (EBM)
 - Manufacturing "Smart Parts" with embedded sensor by EBM
- Objective 2: Evaluate the mechanical properties and sensing functionalities of the "smart parts" with embedded piezoceramic sensors
 - Evaluation of interfacial shear properties
 - Characterization of the sensing capability
- Objective 3: Assess in-situ sensing capability of energy system parts
 - Short & long term testing to determine sensor reliability
 - Cyclic and constant loading to determine the sensing repeatability and stability

- Additive Manufacturing is a process for creating parts directly from a computer model based on 3D Printing technologies
 - Builds complex, functional parts designed in a 3D CAD program
 - Eliminates variation of properties across scales
 - Wide range of applications: ceramic molds, structural ceramic parts, parts for tooling, ceramic preforms for metal matrix composites, etc.

EBM Demo

- "Stop and Go" process, first of its kind
- EBM fabricated manually interrupted
- Sensor embedded during fabrication at desired location

- Piezoceramic for sensing
 - Piezoelectric elements are used in smart systems due their capability of coupling energy in mechanical, thermal, and electrical domain
 - Most of applications rely on relative magnitudes of voltage, or frequency spectrum of signal modified by sensor
 - $LiNbO_3$, $T_c = 1200 °C$

Fabrication

- Powder Material: Ti-6AI-4V
- Mask Plate and Start Plate: Stainless steel
- Layer Thickness: 50 μm

Cross-section view

Fabrication Results

Bottom part

The second second

Mask Plate

Part press fitted into the mask plate (150 mm × 150 mm)

Misalignment of 435 µm

Final "smart parts"

Design A

Assemble of parts

After 2nd Fabrication of parts (top view)

After 2nd fabrication of parts (side view)

Dissemble of the top parts

Important Notes:

• Top part fell off

Design B

Assemble of part (Top View)

Build part (Side View)

Assemble of part (Side View)

2nd fabrication of part (Top View)

Important Notes:

• A misalignment of 1.15 mm was obtained due to the centering of the beam offset

Fabricated parts

Alumina cloth to seal the sensor assembly from metal powder

Characterization

After EBM

EDS on Alumina Plates(After EBM)

EDS on Alumina

Plates(Before EBM)

6

Vaporization temperature of different materials

Element	Vaporization Temperature (C) At Pressure (Torr)				
		10-4	10-3	10-2	10-1
Copper		1035	1141	1273	1432
Gold		1190	1316	1465	1646
Iron		1195	1310	1447	1602
Platinum		1744	1904	2090	2293
Titanium		1250	1384	1546	1742
Tungsten		2767	3016	3309	
Yttrium		1362	1494	1650	1833
Niobium		2355	2539		
Nickel		1257	1371	1510	1679

Mask plate fabrication with isolation cup

Addition of isolation cup to start plate

• Mask plate was machined using CNC

- Bottom cap made of 304 Stainless Steel
- Bolts: 316 Stainless Steel socket head cap screws
- Used to avoid metal powder from entering in sensor box

Machined Mask Plate

Isolation Cup

• NO ELECTRODES PRESENT

- Alumina cloth, alumina plates, PZT, and sleeves were present within isolation cup during build
- Metal coating was still visible on parts

Bottom of start plate after EBM

Sensor Packaging Design

Sensor Packaging Fabrication

Alumina

J. Gonzalez– DOE NETL – Smart Parts

+

Ceramic spray

Smart parts Fabrication (1st run)

Successfully Fabricated Smart Parts

- Vickers Hardness Test was performed on the completed smart part
- No large change in Hardness value throughout the smart part
- EBM Ti-6Al-4V = 40 HRC [5]
- Annealed Ti-6Al-4V = 36 HRC ^[6]

Force Sensing

Force-Voltage Correlation

Temperature Sensing

Fabrication of Energy System Components

Future Work

- Funding support by the U.S. Department of Energy (DOE), award No. DE-FE0012321
- Program Manager: Maria Reidpath

Thank you

Questions?