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Power plants will need to be capable of 
flexible operation 

- Frequent (~daily) load cycling will result in significant creep-fatigue interaction
- Project will focus on:

- Long term creep fatigue testing and lifetime modeling
- Interactions among creep fatigue and oxidation
- Study of microstructurally small cracks under creep-fatigue loading

week1 week2 week3 week4 week1 week2 week3 week4

* Ralf Mohrmann, Proceedings Liege conference 2014

*
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FY15 Technical achievements

- Project initiated in FY15

- Developed two creep machines allowing automated 
loading/unloading sequences during testing

- Set up creep fatigue machine to conduct long term creep 
fatigue tests

- Continued work on interaction between oxidation in steam 
and creep testing

Creep testing in steam with additional thermal cycling

- Project focusing on ferritic/martensitic Gr91 (9Cr-1Mo) alloy
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Very limited Gr.91 cyclic creep data 

• Slight decrease of creep rate and increase of life due to 
cycling

• Beneficial effect of cycling due to dislocation recovery?

• Only short term data

Kim et al. MHT, 31, 249 (2014) 

600ºC
10min hold time
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creep-fatigue 625ºC, ±0.5% results 
consistent with literature data

- Comparison with EPRI Round-Robin conducted at 625ºC
“need longer hold time”
- Significant softening of the alloy at the test beginning
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Similar stress strain curves with 10min 
and 1h hold time up to ~50 cycles

- 10min hold time (tension) test “failed” after ~519 cycles
- Buckling of 1h hold specimen. Specimen geometry has 
been modified to avoid buckling in future tests

Cycle 1 1h
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625ºC, ±0.5% 10 min hold time 
Fast stress relaxation during 1rst ~30s

- Stable relaxation curves after ~100 cycles
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cycle 259

Gr.91, 625ºC
10 min hold time
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625ºC, ±0.5% Similar relaxation curves 
for 10min and 1h hold time

Stress plateau reached after ~30 min for 1hold time tests 
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625ºC, ±0.5%, Significant initial creep 
damage

- Initial high stress leads 
to high creep damage 

N: number of cycle
t0 hold time

Damage accumulation model

Df, fatigue damage 
Dc, creep damage

creep damage over 1 cycle

Cycle 1

Cycle 100

Dc+DF<1
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625ºC, ±0.5% Similar creep damage for 
the 10 min and 1h tests

Total creep damage of ~0.3
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625ºC, ±0.25% strain results in limited 
creep damage during first cycles

Lowering strain and increasing hold time 
to increase creep damage

625ºC, 10min hold time



15

Creep-fatigue modeling needs to 
integrate microstructure evolution

Damage accumulation model
Df, fatigue damage, Dc, creep damage

- Longer test duration needed to allow for microstructure change
- Lower strain to limit initial high creep damage

- Subgrain and network dislocation 
evolution
- Precipitate coarsening
- Cavity formation
- Depletion of solid solution elements

Microstructural creep damage

* Kitahara et al., acta met 54, 1279 (2006).

*
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Ferritic/martensitic Gr. 91 and fully 
ferritic 9Cr alloys creep tested at 650ºC 

in air and steam

Similar composition but different microstructures:
-Gr.91 = standard commercial heat treatment (normalized and tempered)
- 9Cr = Non heat treated material

Wt% Fe Cr Mo Si Mn V C
gr.91 base 8.31 0.9 0.13 0.34 0.26 0.08
9Cr base 8.61 0.89 0.11 0.27 0.21 0.08

50m50m

Strong Gr.91 Weak 9Cr-1Mo
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Asses the effect of oxide scale and 
metal loss on gr.91 creep properties

Loss of metal = decrease of load bearing section?
Composite behavior with scale bearing some 
load?

porous magnetite 
Fe3O4 layer

(Fe,Cr) spinel layer

50m
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Lifetime X3 in steam for 9Cr alloy due 
to load-bearing scale

- Load-bearing oxide scale has a significant impact on weak 9Cr
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Higher effect of load-bearing scale for 
thin specimen

- Thinner specimen to increase the volume to surface ratio
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Cracking/debonding of the outer oxide 
layer but continuous inner layer

0.5mm

rupture

Cu plating

Gr91, Steam, 350h,100MPa 

spallation cracks
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“Similar” oxide scale with and without 
stress except for healed cracks

500h in steam at 650ºC no load

50m

Gr91, Steam, 350h,100MPa 

50m center

rupture
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Cracks in the inner oxide scale seems 
to heal by formation of new oxides

20m

oxidized crack
crack

Gr91, Steam, 350h,100MPa 

5m

inner layer

inner layer
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Similar continuous inner layer with 
oxidized cracks for 9Cr alloy

Small cracks close to the alloy/inner oxide interface

100m 50m

9Cr, Steam, 314h,65MPa 

oxidized crack

crack crack
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Addition of thermal cycling during 
creep testing in steam

- Cycling resulted in lifetime decrease in steam for 
9Cr and gr91 alloys 
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No scale degradation due to thermal 
cycling for 9Cr alloy 

- Thinner scale for thermally cycled specimen

9Cr, Steam, 314h,65MPa 
9Cr, Steam, 256h,65MPa
Thermal cycle 650-250ºC 50m 50m
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No scale degradation due to thermal 
cycling for Gr.91 alloy 

- Difference in scale composition?
- No clear explanation for lower lifetime with thermal cycling

Gr91, Steam, 827h,90MPa
Thermal cycle 650-250ºC 50m

center

50mGr91, Steam, 350h,100MPa 
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Localized effect of thermal cycling 
during creep testing in steam?

- Will assess the effect of cycling on Gr.91 and 9Cr 
microstructure

50m center
50m

Gr91, Steam, 350h,100MPa 

Gr91, Steam, 827h,90MPa
Thermal cycle 650-250ºC 

50m
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FY15 Milestones

- Perform five creep-fatigue tests in humid atmosphere 

- need to conduct 3 more tests

- Initiate five long-term creep-fatigue tests 

- done

- Submit an open-literature paper on creep-fatigue of ferritic-
martensitic steel 

- on track
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Future Activities

- Start assembling a new creep-fatigue machine

- Design a set up for creep-fatigue testing in steam

- Compare the performance of different creep-fatigue models 
based on damage accumulation

- Focus on gr. 91 to develop a microstructure-based model
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