Creep-Fatigue-Oxidation Interactions: Predicting Alloy Lifetimes under Fossil Energy Service Conditions

2015 NETL Crosscutting Research Review Meeting April 27-30 2015, Pittsburgh

Sebastien Dryepondt

Amit Shyam

Oak Ridge National Laboratory

Power plants will need to be capable of flexible operation

- Frequent (~daily) load cycling will result in significant creep-fatigue interaction
- Project will focus on:
 - Long term creep fatigue testing and lifetime modeling
 - Interactions among creep fatigue and oxidation
 - Study of microstructurally small cracks under creep-fatigue loading

2 * Ralf Mohrmann, Proceedings Liege conference 2014

FY15 Technical achievements

- Project initiated in FY15
- Developed two creep machines allowing automated loading/unloading sequences during testing
- Set up creep fatigue machine to conduct long term creep fatigue tests
- Continued work on interaction between oxidation in steam and creep testing

Creep testing in steam with additional thermal cycling

- Project focusing on ferritic/martensitic Gr91 (9Cr-1Mo) alloy

Very limited Gr.91 cyclic creep data

- Slight decrease of creep rate and increase of life due to cycling
- Beneficial effect of cycling due to dislocation recovery?
- ₄ Only short term data

Decrease of creep rate at 600°C, 150MPa with 10h cycle

Increase of time to rupture

EXAMPLE 2 OAK RIDGE NATIONAL LABORATORY

Recovery observed during unloading at each cycle

Effect of cycling on dislocation network and subgrain? Effect of hold time during unloading?

Decrease of lifetime at 650°C, 90MPa with 10h cycle

Different microstructure evolution above and below 600°C?

creep-fatigue 625°C, ±0.5% results consistent with literature data

 Comparison with EPRI Round-Robin conducted at 625°C "need longer hold time"

- Significant softening of the alloy at the test beginning

Similar stress strain curves with 10min and 1h hold time up to ~50 cycles

- 10min hold time (tension) test "failed" after ~519 cycles
- Buckling of 1h hold specimen. Specimen geometry has been modified to avoid buckling in future tests

$625^{\circ}C,\,\pm0.5\%$ 10 min hold time Fast stress relaxation during 1^{rst} ~30s

- Stable relaxation curves after ~100 cycles

625°C, ±0.5% Similar relaxation curves for 10min and 1h hold time

Stress plateau reached after ~30 min for 1hold time tests

625°C, ±0.5%, Significant initial creep damage

UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

625°C, ±0.5% Similar creep damage for the 10 min and 1h tests

MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

625°C, ±0.25% strain results in limited creep damage during first cycles

Lowering strain and increasing hold time to increase creep damage

Creep-fatigue modeling needs to integrate microstructure evolution

Damage accumulation model

 $\frac{D_F}{1-I_{cf}D_C} + \frac{D_C}{1-I_{fc}D_F} = 1 \quad D_f, \text{ fatigue damage, } D_c, \text{ creep damage}$

Microstructural creep damage

- Subgrain and network dislocation evolution
- Precipitate coarsening
- Cavity formation
- Depletion of solid solution elements

- Longer test duration needed to allow for microstructure change
- Lower strain to limit initial high creep damage
- 15 * Kitahara et al., acta met 54, 1279 (2006).

Ferritic/martensitic Gr. 91 and fully ferritic 9Cr alloys creep tested at 650°C in air and steam

Wt%	Fe	Cr	Мо	Si	Mn	V	С
gr.91	base	8.31	0.9	0.13	0.34	0.26	0.08
9Cr	base	8.61	0.89	0.11	0.27	0.21	0.08

Similar composition but different microstructures:

-Gr.91 = standard commercial heat treatment (normalized and tempered)

- 9Cr = Non heat treated material

Asses the effect of oxide scale and metal loss on gr.91 creep properties

Loss of metal = decrease of load bearing section? *Composite behavior with scale bearing some* load?

Lifetime X3 in steam for 9Cr alloy due to load-bearing scale

- Load-bearing oxide scale has a significant impact on weak 9Cr

Higher effect of load-bearing scale for thin specimen

- Thinner specimen to increase the volume to surface ratio

Cracking/debonding of the outer oxide layer but continuous inner layer

Gr91, Steam, 350h, 100MPa

"Similar" oxide scale with and without stress except for healed cracks

_ Gr91, Steam, 350h,100MPa

500h in steam at 650°C no load

Cracks in the inner oxide scale seems to heal by formation of new oxides

Gr91, Steam, 350h, 100MPa

Similar continuous inner layer with oxidized cracks for 9Cr alloy

9Cr, Steam, 314h,65MPa

Small cracks close to the alloy/inner oxide interface

Addition of thermal cycling during creep testing in steam

 Cycling resulted in lifetime decrease in steam for 9Cr and gr91 alloys

No scale degradation due to thermal cycling for 9Cr alloy

- Thinner scale for thermally cycled specimen

No scale degradation due to thermal cycling for Gr.91 alloy

center

- Difference in scale composition?
- No clear explanation for lower lifetime with thermal cycling

Localized effect of thermal cycling during creep testing in steam?

- Will assess the effect of cycling on Gr.91 and 9Cr microstructure

FY15 Milestones

- Perform five creep-fatigue tests in humid atmosphere

- need to conduct 3 more tests
- Initiate five long-term creep-fatigue tests

- done

- Submit an open-literature paper on creep-fatigue of ferriticmartensitic steel

- on track

Future Activities

- Start assembling a new creep-fatigue machine
- Design a set up for creep-fatigue testing in steam
- Compare the performance of different creep-fatigue models based on damage accumulation
- Focus on gr. 91 to develop a microstructure-based model

Acknowledgements

- D. Erdman, C.S. Hawkins, T. Lowe, T. Jordan, B. Thiesing, D. McClurg for assistance with the experimental work

- B. Pint, P. Tortorelli, Phil Maziasz and R.C. Cooper for exciting scientific discussions

This research was sponsored by the U.S. Department of Energy, Office of Fossil Energy under the supervision of Vito Cedro III

