

Gallium Oxide Nanostructures for High Temperature Sensors

Ramana Chintalapalle (PI)

Mechanical Engineering, University of Texas at El Paso **Students:** Ernesto Rubio (PhD); S.K. Samala (MS)

> Program Manager: Richard Dunst, NETL, DOE Project: DE-FE0007225 Project Period: 10/01/2011 to 12/31/2014

04/30/2015

DOE Crosscutting Technology Review Meeting

T

Outline

Introduction

Research Objectives

Experiments

Results

□Intrinsic Ga₂O₃ □Tungsten (W)-doped Ga₂O₃ Summary & Outlook

Introduction

Challenging Environment in Power Systems

Gallium Oxide (Ga₂O₃)

Project Objectives and Goals

<u>Objective 1</u>: To fabricate high-quality pure and doped Ga₂O₃-based materials and optimize conditions to produce unique architectures and morphology at the nano scale **<u>Objective 2</u>**: Derive the structure-property relationships at

the nanoscale dimensions and demonstrate hightemperature oxygen sensing (faster response) and stability

Objective 3: To promote research and education in the area of sensors and controls

<u>**Goal:**</u> Design the high temperature oxygen sensors (employing Ga_2O_3 -based nanostructures)

Project Work Plan

Experiments

Materials

 $\frac{\text{Target (for Deposition)}}{\text{Ga}_2\text{O}_3 \& \text{W}}$

- Substrate(s):
- Si(100)
- Alumina

Fabrication – Thin Films

- RF magnetron sputtering
- Deposition Conditions
 Fixed:
 - Base pressure ~10⁻⁶ Torr
 - Powers: $Ga_2O_3 \rightarrow 100 \text{ W}$
 - Target-Substrate distance: 7 cm
 - Sputtering gas: Argon + O₂

Variables:

Sample set 1 (Intrinsic):

Substrate Temperature: RT-500 °C

Sample set 2 (W-Doped):

Tungsten Target Power (50 to 100W)

Substrate Temperature = 500 °C

Sample set 3 (W-Doped):

Target Powers = const.; Substrate temperature varied from 500 to 800°C

Sensors and Sample Matrix

- Extremely thin (~50 nm) samples
- Two silver electrodes attached on the surface

- ~200 nm thick Ga-oxide
- 200 nm thick Pt interdigited electrodes
- Spacing:
 100 μm

- Bulk (ceramic pellets)
- Electrical Impedance

Sensor Performance - Electrical

- Oxygen introduced and partial pressures of oxygen were varied
- Evaluation at temperatures ≥ 700 °C

• Constant current

Crystal Structure

500 °C is favorable/critical to provide sufficient energy for Ga_2O_3 film crystallization (β phase)

L = $L_o \exp(-\Delta E/k_B T)$ L: Average size L_0 : Pre-exp. factor (film, substrate materials) ΔE : Activation energy, k_B : Boltzmann constant and T: Absolute temperature.

Morphology & Composition

Microstructure & Electronic Properties

Tungsten Doping

W-Doped Ga-Oxide

t = 200 nm

W-Power (Watts)	W-Content (Atomic %)
0	0
50	5
75	10
100	15

Crystal Structure – Power dependence

Band Gap (Power dependence)

E.J. Rubio and C.V. Ramana, Appl. Phys. Lett. 102, 191913 (2013).

Crystal Structure – (Temp. Dependent)

Only β -phase presented for all films.

Mechanical Characteristics

Hardness & Elastic Modulus increases with W-content

Can be tolerant and impact resistant

Oxygen Sensor Characteristics

Intrinsic Ga₂O₃ films Time response: 62 sec

04/30/2015

Oxygen Sensor Characteristics

W (5 at%) - doped Ga₂O₃ films 20% O, out 1800 15% Resistancs (Ohms) 10% 1680 1560 1440 O, in 1000 2000 3000 Time (seconds)

- Ga_2O_3 based films showed oxygen sensitivity at 700 °C,
- As an n-type semiconductor the resistance of the film increased in the presence of oxygen.
- Time response was drastically improved with the incorporation of tungsten

- Increasing W-content reduces sensitivity of the sensors
- Time response is increased with increasing W-content
- Stability of the electrical properties is reduced with increasing W-content

Two Probe Oxygen Sensor Characteristics

04/30/2015

Hot Gas Exposure (600-700 nm)

•W-doped Ga-oxide demonstrated sensing properties to oxygen at 700 °C.

04/30/2015

0.12

DOE Crosscutting Technology Review Meeting

Intensity vs. Gas Exposure Summary

- ♦ W-doped films showed being sensible to H₂ and O₂.
- O_2 sensitivity increased from 10% to 15% of O_2 into Ar, but decrease again at 20%
- Sensitivity to gases was optimum in Ar environment, but small-to-non response in a mixture of Ar+Air

Electrical Impedance Analyses

04/30/2015

DOE Crosscutting Technology Review Meeting

Crystal Structure – (after annealing)

Deposition Temperature Ts=500 °C; Annealing Temperature Ta=700 °C for 30 min

Heat Treatment

- β-phase is stable for all films after annealing
- surface morphology suffer porous formation for Wdoped films.
 Evidence of Wself diffusion

04/30/2015

How does it work?

Impact

Journal Publications:

- 1. E.J. Rubio and C.V. Ramana, Appl. Phys. Lett. **102**, 191913 (2013).
- 2. A.K. Narayana Swamy, E. Shafirovich, and C.V. Ramana, Ceram. Inter. **39**, 7223 (2013).
- S.K. Samala, E.J. Rubio, M. Noor-A-Alam, G. Martinez, S. Manandhar, V. Shutthanandan, S. Thevuthasan, and C.V. Ramana, J. Phys. Chem. C 117, 4194 (2013).
- 4. Two others (under preparation)

Conference Presentations:

- 1. International Materials Research Congress (IMRC) to be presented (2015)
- 2. Southwest Energy Symposium, 2015, El Paso, TX
- 3. TMS 2014; ICMCTF 2015
- 4. ICMCTF-2013, San Diego, CA
- 5. AVS International Symposium, 2012
- 6. Southwest Energy Symposium, March 24, 2012, El Paso, TX

04/30/2015

Education & Training:

- 1. Ernesto J. Rubio: PhD (Full)
- 2. A.K. Narayana Swamy: PhD (part of disseration)
- 3. Sampath K. Samala: MS (thesis)
- 4. Abhilash Kongu: MS (non-thesis)

Summary and Conclusions

- Optimum conditions were established to fabricate Ga_2O_3 and W-doped Ga_2O_3 with the stable β -phase (monoclinic)
- Intrinsic Ga₂O₃ and W-doped Ga₂O₃ demonstrated to be sensitive to oxygen at high temperatures, with improved time of response for W-incorporation

Future Work

Acknowledgements

- DOE-NETL
- EMSL/PNNL, Richland, WA
- Michael Carpenter (SUNY)

THANK YOU!

