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Outline

* Long term COZ2 injection integrity monitoring — problem statement

« Main objective to demonstrate and develop a novel, robust, down hole
sensing technology for in-situ monitoring

— by developing strain, temperature,
— and pressure sensors

— as a distributed sensor system

— that can integrate the sensor data with models.




!%—v\.-

- T VTR
R

MISSOURI Utmw.mn OF Sc

) "I; CHNOLOGY

1in CN_ ceniiactratinn nrniect - \NNASP



M)_N‘ MISSOURT UNIVERSITY OF SCIENCE AND LECHNOLOGY

U N LV EsRESS NS

Potential leakage pathways of CO,
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Natural fracture Shear fracture Hydraulicfracture

Matrix Structural Geomechanics
= Capillary entry pressure = Flow on faults = Hydraulic fracturing
= Seal permeability = Flow on fractures = Creation of shear fractures
» Pressure seals = Flow between permeable = Earth quake release

= High permeability zones zones due to juxtapositions




CLEMSON B MISSOURL UNIVERSIEY OE SEIENCE AND  LECHNOLOGY

U N LV EsRESS NS

Wellbore Leakage

PRIMARY

1. Incomplete annular cementing job,
doesn’t reach seal layer

2.  Lack of cement plug or permanent packer

3.  Failure of the casing by burst or collapse

4.  Poor bonding caused by mudcake

5.  Channeling in the cement

6. Primary permeability in cement sheath or
cement plug

SECONDARY

/. De-bonding due to tensile stress on casing-
cement-formation boundaries

8.  Fractures in cement and formation

9. Chemical dissolution and carbonation of
cement

10. Wear or corrosion of the casing
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Long term CO, Injection integrity monitoring
— problem statement

 Background:

— Subsurface geologic formations offer a potential location for long-
term storage of CO2.

— Achieve the goal to account for 99% of the injected CO2 requires
advanced monitoring technology to optimize the injection
processes and forecast the fate of the injected CO2

« Status:

— Due to the complexity, no single data type is sufficient by itself;
different monitoring and characterization approaches are deemed
to be necessary.

— In situ down-hole monitoring of state parameters (e.g., pressure,
temperature, etc.) provides critical and direct data points to validate
the models, optimize the injection scheme, detect leakage and
track the plume.

— Current down-hole sensors are insufficient to meet the reliability

and cost requirements.
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 Long term COZ2 injection integrity monitoring — problem statement

— by developing strain, temperature,
— and pressure sensors
— as a distributed sensor system

— that can integrate the sensor data with models.
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The goal is to develop a monitoring system combined
for the wellbore and the reservoir

Strain,

Temperature
o

Temperature,
Pressure
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 Long term COZ2 injection integrity monitoring — problem statement

« Main objective to demonstrate and develop a novel, robust, down hole
sensing technology for in-situ monitoring

— by developing strain, temperature,
— and pressure sensors
— to a distributed sensor system

— that can integrate the sensor data with models.
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CC FPI Sensor Principle
Coaxial Cable Fabry-Perot Interferometer (FPI)

Outer Conductor Reflectors
Z \\
X X
—— ST L
< <
/ —
A / = .
S Inner Conductor I< >| Dielectric Layer
11 L

® Temperature sensing
— Dielectric thermal effect

— Thermal expansion

® Strain sensing
— Length elongation

(1+2N)c 1

1:valleys — A ] EI 1

L e —
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CCFPI Temperature Sensors

Drilling holes
/ N
I 1] e Half-way holes
— Unstable
structure

— Package issue

Squeezed copper crimp rings

*—#

I e e e :
® Crimp ferrule
: ! : — Easy fabrication

— No further
packaging
needed
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 Repeatable linear temperature response with
high sensitivity




CLEMSON PRI f-; . mMISSOURI UNIVERSITY OF SEIENCE AND FECHNOLOGY
s Wil h :

U N LV EsRESS NS

CCFPI Strain Sensors

Strain sensors could be designed in the same method of temperature
sensors

Squeezed copper crimp rings

Temperature cross talk Page 14
B T s T R ————
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Minimize the T cross talk

Af

—_ N | — _
f crosstalk —
N

0&% + Qere jAT

Use air cavity to minimize T- Use glass to minimize
dependence of dielectric constant thermal expansion

glass glass
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Temperature cross talk is reduced to 20 ppm/°C (or 2ue/°C), which is very
close to the theoretical minimum of 16.6 ppm/°C (limited by the CTE of

copper)
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Temperature and strain sensor testing W|th
combined loads
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Test of temperature
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pressure
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 Long term COZ2 injection integrity monitoring — problem statement

« Main objective to demonstrate and develop a novel, robust, down hole
sensing technology for in-situ monitoring

— by developing strain, temperature,
— and pressure sensors
— to a distributed sensor system

— that can integrate the sensor data with models.
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CCFPI Pressure Sensor

large Young's modulus ~ Small Young's modulus large Young's modulus

- ] =

The elongation almost concentrates on the part with a small Young’s
modulus. The pressure induced strain can be amplified

Protecting Strain guage
tubing (large E) (small E)
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* Nonlinear responses
e Sensitivity is not high enough
« Temperature cross talk is difficult to compensate
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Amplification by volume effort: Small volume change
can be transferred to large liquid level change

® Linear response
® Sensitivity is high
® Robustness because of the protection reservoir
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_ Liquid Level Sensors. . —

Liquid
level
sensor

: Copper core :
Glass tubing—_]
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Pressure Response

 The volume effect based amplification
significantly improved the sensitivity
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 Long term COZ2 injection integrity monitoring — problem statement

« Main objective to demonstrate and develop a novel, robust, down hole
sensing technology for in-situ monitoring

— by developing strain, temperature,
— and pressure sensors

— as a distributed sensor system

— that can integrate the sensor data with models.
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Distributed Coaxial Cable FPI

................. Location along the
AN coaxial cable

Spectrum
reconstruction
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................ : Strain/Temp
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* Microwave can detect both amplitude and phase

* Frequency-Time-Frequency processing can
Isolate any individual sensor along the cable
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» Successfully measured the temperature variations at the

location of 600 650 mm.
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 Successfully measured the strain applied at the
location from 300 to 350mm Page 29
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Distributed strain sensor demo
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 Long term COZ2 injection integrity monitoring — problem statement

« Main objective to demonstrate and develop a novel, robust, down hole
sensing technology for in-situ monitoring

— by developing strain, temperature,
— and pressure sensors

— as a distributed sensor system

— that can integrate the sensor data with models.
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Coaxial cable sensing system deployment

ﬁ wellhead

DTS/DSS CCC

surface casing

NDN N ~—

\__— -
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—————

e ———— -7 - temperature sensor
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Step 3- Adding casing o o)
elements to the model
O
o O O
O O O
Cement O l:)
Mechanical and Step 4- Adding cement o o
Casiag Thermal Loads elements to the model
y &
0 0 0
O O O
o Step 5- Cement hydration
Step 1- Loading the model _ i 4
with in-situ stress (horizontal O O :ehl:se::mre 234 velame 9 @
and vertical stresses) o s O
o O 0O
o O O O O O
o o &
Step 2- Simulating of drilling Step 6- Applying mechanical
step by removing wellbore O and thermal loads to the casedO © D
elements and applyving mud wellbore
weight o O Q
c O ©O v
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Fallure Modes in the cement sheath

Failure Modes
De-Bonding at Casing- De-Bonding at Cement-
Cement Interface Formation Interface

Casing ~_

Cement —_

Formation =~

™

Radial Fractures in Radial Fractures in
Cement Sheath Formation
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Summary

« Distributed strain and temperature rigid coaxial sensors for
down hole conditions have been developed and tested at
down-hole conditions

 The pressure sensor is developed and concept is proven
during testing

« Distributed sensing concept using coaxial cable is
validated

« Final year will focus on proof of concept of the integrated
monitoring system
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