Advanced Alloy Design Concepts for High-Temperature Fossil Energy Applications (FEAA114)

PI: Yukinori Yamamoto

Oak Ridge National Laboratory Oak Ridge, TN

Contributors: Suresh Babu, Ben Shassere (Univ. of Tennessee) Bernd Kuhn, Michal Talik (Forschungszentrum Jülich) Bruce Pint (ORNL)

Acknowledgements: Crosscutting Research Program, Office of Fossil Energy, US-DOE

ORNL is managed by UT-Battelle for the US Department of Energy

2015 Crosscutting Technology Research Review Meeting , April 27-30, 2015

Why "Improvement" of CSEF required? (FEAA107, ~FY14)

- Majority of structural components for High-Efficiency Boilers (T23, T/P91, T/P92)
- Life of weldments shorter than Base Metal
 - Type IV failure shortens the material life, caused by weakened microstructure at the heat affected zone (HAZ)
- Type IV failure of traditional F-M steel weldments is unavoidable
 - To minimize: Optimization of heat treatment
 - To eliminate: New alloy development

Source: ETD Ltd.

Approaches have been made/to be made

Optimization of HT (FEAA107, ~FY14)

- Target existing CSEF steel (*e.g. Grade 91*).
- Apply optimized thermomechanical heat treatment (*feasible, inexpensive*).
- Based on scientific understanding (*required cumulative efforts*), as well as breakthrough concepts.

New alloy development (FEAA114, FY14~)

- Target new alloys with optimized properties (e.g. *no Type IV failure = increase upper limit temperature*).
- Improved mechanical properties demand increased corrosion resistance.
- Maintain competitiveness with existing structural materials (*cost, fabricability*).

Target Materials/ Applications

Three different grades of structural materials that are currently available for use by the US electric utility industry:

- Ferritic steels for temperatures <u>up to 600°C</u>, with ferritic-martensitic versions (F-M steels) having increased strength <u>up to 600-620°C</u>;
- 2) Austenitic stainless steels with strength and environmental resistance up to 650°C; and
- 3) Ni-base alloys for temperatures <a>> 700°C.
 - Super-heater / re-heater
 - Steam piping / tubing
 - Etc.

Alstom USC and AUSC Power Plants – J. Marion - NTPC/USAID Int. Conf. SC Plants - New Delhi, India, 22 Nov. 2013 – P 8

Corrosion/Oxidation Resistant Alloys

- Environmental compatibility AND sufficient mechanical properties are the key for fossil-fired energy application
 - Fabricability, weldability, and inexpensive material cost are also required
 - Alloy design requires satisfying all demands in one alloy
- Approach: Follow successful "alumina-forming austenitic (AFA) steel" development strategy
 - Select the base alloy compositions satisfying steam oxidation resistance (= alumina-scale formability)
 - Apply optimization of strength via solution/precipitation hardening (= creep resistance)

Project objective

 To identify and apply breakthrough alloy design concepts and strategies for incorporating improved creep strength, environmental resistance, and weldability into the classes of alloys (ferritic, austenitic, and Ni-base) intended for use as heat exchanger tubes in fossil-fuelled power generation systems at higher temperatures than possible with currently available alloys.

Starting from Fe-30Cr-3AI base ferritic steel

Why high-Cr FeCrAl?

Expected fire-side corrosion resistance

- 30 wt% Cr will be required for surface protection
- Addition of AI allows formation of alumina-scale for steam-side oxidation resistance
- Advantages:
 - Essentially free from Type IV failure (no α - γ transformation)
 - Better oxidation/corrosion resistance than advanced austenitic SS or Ni-base alloys with inexpensive cost
 - Al addition destabilizes σ -FeCr phase

Potential issues:

- Poor processbility due to low RT toughness
- No carbides/nitrides can be used for strengthening precipitates because of very low C solubility/AIN formation, respectively

Materials Science & Engineering A 562 (2013) 9–16

Preparation of Materials

- Down-selected alloys to be evaluated:
 - 8 model alloys based on Fe-30Cr-3AI + Nb, Zr, and Si
 - Expected Fe₂Nb type Laves-phase precipitates for strengthening
 - Used computational thermodynamic tools for downselect

Table: Nominal composition of the alloys studied

Consideration of Phase Equilibrium

• High Nb addition:

- Advantage: increase the amount of Laves phase precipitates for strengthening
- Disadvantage: raise the solution limit temperature (difficult to be processed)

OAK RIDGE National Laboratory

Fe-3.0Al-30.0Cr-1.0Nb-0.2Si wt(%)

Preparation of Materials (cont'd)

Melted / Processed the lab-scale heats:

- Arc-melted and drop-cast to make ~500g bar ingots
- Hot-forged and -rolled to make sheet samples
 - CC01-04: Warm-rolled at 300°C + annealed at 1100-1200°C
 - CC05-08: Hot-rolled and annealed at 1300°C

Prepared specimens for evaluations:

- Dogbone shape sheet specimens for tensile/creep testing
- Coupons for oxidation testing
- Bar samples for corrosion testing

National Laboratory

Gap Between Calculation and Experiment

Controlled grain structure with solution heat-treated condition

- CC01-04: Most of the second-phase (Laves) dissolved at 1100-1200°C
- CC05-08: Laves-phase still remained even after 1300°C processing

OAK KIDGE National Laboratory

Improved Tensile Properties Superior to Grade 91/92 Steels (Above 600°C)

Better Steam Oxidation Resistance than 310 Stainless Steel

- 1Nb alloys show slow oxidation kinetics
- Tests for CC05-08 (2Nb alloys) have also been initiated

3AI-2Nb Alloys Showed Less Metal Loss Compared to Fe-30Cr in Coal Ash

- Ash: 30%Fe₂O₃-30%Al₂O₃-30%SiO₂-5%Na₂SO₄-5%K₂SO₄
- Gas: 61%CO₂-30%H₂O-3%O₂-0.45%SO₂

Creep Curves at 700°C and 70MPa

– 1Nb alloys: ~2.0 wt%; 2Nb alloys: ~4.2 wt%

OAK KIDGE National Laboratory

Creep-rupture Properties (at 650-700°C)

- Creep-rupture lives increase monotonically with increasing the Nb additions:
 - \rightarrow Amount of Laves-phase precipitates is the key

Dense and Fine Precipitates in Matrix

17 Advanced Alloy Design Concepts for High-Temperature Fossil Energy Applications

National Laboratory

Other Laves-phase Strengthened Ferritic Steel Development

* Toda, et al., Proceedings of the 10th Liège Conference on Materials for Advanced Power Engineering, 2014

** M. Talik and B. Kuhn, Presentation at Workshop on Coordinated FZJ-ORNL Materials Research for Energy Applications

Re-consideration of Phase Equilibrium

- Increasing the amount of Laves phase was effective in improving creep-rupture life
- For making the thermo-mechanical process easier, "third element" addition is proposed

Concern about Raw Material Cost

As of 3/6/2015

Element	Price for pure element, USD/LB	Source product
Cr	3.64	Ferro-chrome 60-65% Cr + Low C
Та	146.40	Tantalum scrap 99.9%
W	30.00	Ferrotungsten 75% W
Nb	21.91	Ferro-Niobium 66% Nb
Zr	13.67	Zirconium Sponge 99.4% Zr + Hf
Мо	12.30	Ferro-Molybdenum 60% Mo
Ti	4.05	Ferro-titanium 70% minimum Ti
Si	0.87	Ferro-silicon 75% Si

(ref.: <u>www.metalprice.com</u>)

Collaboration with Forschungszentrum Jülich for High Cr Ferritic Steel Development

- Task: Weld development of 17Cr base ferritic steels (Hiperfer-17Cr with W+Nb)
- Progress: Completed e-beam welds, and performed butt welds with two different filler metal wires. Property screenings (microstructure characterization, bend test, and cross-weld creep test) are planned.

Cross-weld microstructure

(17Cr alloy, e-beam welded)

Picture of welded plates with filler metal (17Cr alloy, gas tungsten arc welded)

Milestone Status

• FY2014:

- <u>Complete computational screening of first iteration of candidate creep-</u> resistant FeCrAl alloys (March 2014, Met).
- <u>Complete preliminary property assessments (oxidation, tensile, and creep) of</u> down-selected candidate alloys (January 2015, Met).
- <u>Complete characterization of e-beam welded high-Cr Ferritic steels prepared</u> under collaboration with Jülich Research Centre (September 2014, Met).

• FY2015:

- <u>Evaluate oxidation resistance of the FeCrAI alloys</u> to provide feedback to the alloy design process (March 2015, Met).
- <u>Complete a second iteration of computational thermodynamic assessment to</u> optimize alloy composition suitable for dense and fine second-phase precipitation dispersion (April 2015, in progress).
- <u>Down-select one or two creep-resistant FeCrAl alloys</u> and initiate creeprupture testing (June 2015).
- <u>Submit a journal paper on the new FeCrAl alloy design study (September 2015).</u>

Future Activities

- Assessment of corrosion resistance of the alloys:
 - Preliminary results indicated a potential improvement by the AI+Nb additions
 - Detailed characterization is currently in progress
- <u>Detailed microstructure characterization</u> of annealed/creepruptured specimens:
 - Investigate the effect of Nb additions on microstructure
 - Interpret the role of second-phase on creep strength

Evaluate new alloy compositions:

- Effect of "third element" additions on microstructure, thermal stability, and creep performance
- Initiate weld study including evaluation of cross-weld creep properties

• <u>Communicate with FZJ</u> (every 6 weeks) to update the progress:

- E-beam weld for screening
- GTAW filler metal development
- Cross-weld property evaluation of GTAW samples

Summary

Creep-resistant high-Cr FeCrAl alloy development:

- Selected <u>Fe-30Cr-3AI base alloys</u> for potentially better oxidation and corrosion resistance, and <u>the Nb addition</u> for Laves phase precipitate strengthening
- <u>Combined additions of Al and Nb</u> resulted in improved properties of both oxidation resistance and mechanical properties
- <u>Creep-rupture life increased with increasing the Nb additions (= the amount of Laves-phase)</u>, although high Nb addition required very high solution treatment temperature
- <u>Second iteration of computational thermodynamic assessment</u> for optimized alloy design was initiated through the "third element" addition for potentially improved strength and processbility

Thanks for your attention

3AI-2Nb Alloys Showed Lower Mass Change than Fe-30Cr in Coal Ash at 700°C

- Five selected alloys were exposed in a coal ash corrosive environment (Ash: 30%Fe₂O₃-30%Al₂O₃-30%SiO₂-5%Na₂SO₄-5%K₂SO₄; Gas: 61%CO₂-30%H₂O-3%O₂-0.45%SO₂) at 700°C;
 - CC04: 3AI-0Nb
 - CC05: 3AI-2Nb
 - CC06: 3AI-2Nb-0.1Zr
 - CC07: 2AI-2Nb-0.1Zr
 - CC08: 1AI-2Nb-0.1Zr
- The combined additions of Al + Nb (3Al-2Nb) potentially improved the corrosion resistance
- Detailed characterization is required to understand the mechanism (in progress)

