

Large Scale Screening of Low cost Ferritic Steel Designs for Advanced Ultra-SuperCritical Boiler Using First Principles Methods

Lizhi Ouyang Tennessee State University 3500 John A. Merritt Blvd., Nashivlle, TN 37209

2015 Crosscutting Technology Research Reviewing Meeting Award # DE-FE-0011549

April 29, 2015

Background

Goal

Project status

Background

Background

Material requirements for Advanced Ultra-SuperCritical (AUSC) boiler:

Low cost metal

Compatible thermal properties

Sufficient high temperature performance

- Sufficient mechanical strength
- Creeping resistance
- Corrosion resistance

Low temperature ductility

Motivation

Gerritic steel

- BCC matrix with low Ni content (low cost)
- Low temperature brittleness
- > Weldability

New design of ferritic steel

- Composition modulation
- Microstructure engineering

Complexity of the Alloy Strategy

□ Many structural factors:

> Matrix

- ➢ Precipitation
- ➤Grain boundary
- ➤ Interphase

Correlated problem

- Doping may solve a problem but bring in more problems
- Difficult to assess the effect of alloying

Known 9-12% Cr Ferritic Steels

Table 1. Precipitate Phases in Different Steel Phases. PT Represent for Prototype Structure and SG for Space Group Number.

			Steel Phases											
Precipitate Phase	РТ	SG	P91	P92	E911	AXM	HCM12	P122	T122	NF1 2	FN5	TB12	VM12	X20
BCC_A2	W	229	Х	х	х	х	х	х	х	х	х	х	х	х
M23C6	Cr23C6	225	Х	х	х	х	x	х	х	х	х	х	х	х
LAVES	MgZn2	194	Х	х	х		x	х	х	х	х	х	х	х
Z_PHASE	NaCl	225	Х	х	х	х	x	х	х	х	х	х	х	х
NbNi ₃	Al3Ti	139	Х			х	x	x	х	х	х			
AIN	ZnO	194	Х	х	х	х		x	х			х		
SIGMA	CrFe	136		х	х							х		
FCC_A1	Cu	225		х	х	х	x	x	х	х		х	х	х
HCP_A3	Mg	194		х	х							х		
M ₂ B _{Tetr}	Fe2B	140		х		х								
MU_PHASE	W6Fe7	166				х								
M6C	W3Fe3C	227				х								
Cr ₂ B _{Ortho}	Mg2Cu	70						x	х	х	х		x	
PI	Mo3Al2C	70										х	х	

Ferritic Steel Matrix

□ BCC structure

Composition of the BCC matrix in 9-12% Cr steels

Name	Fe	Cr	Ni	Мо	Si	ΑΙ
P91	0.9898	5.87E-4		8.42E-9	6.64E-3	2.77E-3
E911	0.9969	5.29E-4		1.13E-8	2.03E-3	5.75E-12
P92	0.9944	5.55E-4	6.10E-4	2.30E-8	3.83E-3	6.14E-4
AXM	0.9964	5.45E-4	5.96E-4	1.97E-7	1.31E-3	1.15E-3
HCM12	0.9977	5.36E-4	1.03E-5	1.19E-8	1.72E-3	
P122	0.9986	5.15E-4	6.22E-4	1.08E-11	2.99E-4	4.18E-11

Screening ferritic steel design based on properties of the solid solution matrix

- Elastic properties
- Low temperature ductility

Develop efficient parallel software for large scale screening calculations

- First principles quality for solid solution system
- Automated solid solution structure sampling
- Automated properties calculations

- Dilute multi-component solid solution
 - requires huge atomic structure model
 - components of very low concentration considered as point defect
- Special quasi-random structures

Lattice: Solid Solution

Properties calculations

Supercell Approaches

> Ensemble Average of Supercells:

 $F(\vec{\sigma},T)\approx \sum_{i\in\vec{\sigma}} w_i(T)F_i(T)$

supercells are local snapshots in the infinite solid solution lattice $ec{\sigma}$

Cluster Expansion Methods
 Weighted average of clusters:

 $F(\vec{\sigma},T) \cong \sum_{\alpha,s} K^s_{\alpha}(T) \Phi^s_{\alpha}$

α,s are cluster indices and cluster order indices
 clusters are local structures in the infinite solid solution lattice σ
 Mathematically rigorous

G(P,T) Module: UnitCell Expansion

UnitCell Expansion Method for multi-component multi-sublattice systems:

$$F(\vec{\sigma},T) \cong \sum_{\gamma,s} K_{\gamma}(T) \Phi_{\gamma}^{s},$$

Rationale: Coarse grained cluster (CGC) expansion,

- •Unitcells are treated as pseudo atom types
- •Simplify lattice
- •Expected must faster cluster interaction decaying over distance (*up to pair*)
- •Much larger number of components (pseudo atoms) (*unitcell types*)

D Poor man's approximation to cluster expansion method

$$\begin{split} F\left(\vec{\sigma},T\right) &\cong \sum_{\alpha,s} K_{\alpha}^{s}(T) \Phi_{\alpha}^{s}, \\ \left\langle F \right\rangle_{SQS} &\cong \sum_{\alpha,s} K_{\alpha}^{s}(T) \left\langle \Phi_{\alpha}^{s} \right\rangle_{SQS}, \\ \left\langle \Phi_{\alpha}^{s} \right\rangle_{SQS} &\approx \left\langle \Phi_{\alpha}^{s} \right\rangle_{SQS} \end{split}$$

Generating SQS Set

□ At high temperature limit

site occupation is complete randomcorrelation function is known

$$\rho_{\alpha}(\sigma_{HT}) = \prod_{i \in \alpha} \left\langle \gamma_{\alpha_i, M_i}(\sigma_i) \right\rangle_{\alpha}$$

match SQS correlation with the known correlation function

✓ Exhaustive search

✓ Genetic algorithm

✓ Other global optimization approach may also be used

B. Application to 9-12Cr Ferritic Steels

B.1 Properties of known 9-12Cr ferritic steel

- Positive control using well characterized 9-12Cr ferritic steels
 - P91, E911, P92, AXM, HCM12, P122, T122, NF12, FN5, TB12, VM12 and X20
 - > Formation energy and Elastic constants will be assessed initially.
 - > Assess ductility using the ratio of bulk modulus and shear modulus.
 - Stacking fault energy and surface cleavage energy will be carried out to estimate the Rice-Thomson parameter which is widely used as ductility criterion.
 - > Trend analysis of indicative parameter of ductility.

B. Application to 9-12Cr Ferritic Steels

B.2 Screening studies of Ferritic Steels

- Screening in a progressive manner with 4 components BCC solid solutions examined first.
- Precipitation effects to be assessed through homogenization
- Global optimization methods such as simulated annealing and genetic algorithm to locate the optimal ferritic design.

Incomplete structure information about the phases in the steel

- Missing information about site distribution
 - Phase compositions are known
 - Multiple non-equivalent solid solution sites

Composition requires exceedingly large model

- Dopant concentration between 1000ppm to 1ppm
 - Need to assess the dopant-dopant interaction
 - Model requires > 1000 atoms
- Dulite dopant can be treated as point defect
- > Using the scaling law to estimate the effect of dopant with intermediate concentration: G ~ c^{α}

AXM Steel Facts

<u>Phase</u>	Vol fract	<u>Composition</u>	<u>Crystal</u>	Microstructure
BCC-A2#2	0.8464	Fe _{0.996} Si _{0.002} Al _{0.001}	cl2	Matrix phase
BCC-A2#1	0.1006	Cr _{0.957} Mn _{0.043}	cl2	Precipitation
$M_{23}C_{6}$	0.0203	(Cr _{0.864} Mn _{0.130} Fe _{0.006}) ₂₃ C ₆	cF116	Precipitation
μ-Phase	0.0112	(Fe _{0.992} Cr _{0.008}) ₇ (W _{0.650} Mo _{0.35} ₀) ₆	hR39	Precipitation
FCC-A1#1	0.0100	Ni _{0.584} Fe _{0.370} Si _{0.046}	cF4	Precipitation
M ₆ C	0.0037	(Mo _{0.992} W _{0.008}) MoFe ₂ C	cF112	Precipitation
Z-Phase	0.0051	(Cr _{0.898} Fe _{0.102})VN _{0.669}	tP6	Precipitation
NbNi ₃	0.0010	Ni ₃ Nb	oP8	Precipitation
AIN	0.0012	AIN	hP4	Precipitation
FCC-A1#3	0.0003	Cu _{0.999} Ni _{0.001}	cF4	Precipitation
M ₂ B	0.0003	(Mo _{0.953} Cr _{0.047}) ₂ B	tl12	Precipitation

Structure Modeling

Total composition

Wyckoff site composition

Lattice site occupation

Structure Modeling

Structure models generation

- Based on structure prototype
 - Limited to size < 250 atoms</p>
 - Site-distribution based on prior knowledge

Composition requires exceedingly large model

- Dopant concentration between 1000ppm to 1ppm
 - Need to assess the dopant-dopant interaction
 - Model requires > 1000 atoms
- Dulite dopant can be treated as point defect
- > Using the scaling law to estimate the effect of dopant with intermediate concentration: G ~ c^{α}

Calculated use the in-home developed G(p,T) package

- Employed VASP as the computing engine
- > Automate the calculation and fully taking advantages of symmetry
- > Both stress and energy based calculations are available

Accuracy setting:

- Standard 400eV energy cutoff
- Standard K-point sampling: metal (cutoff 35), others (cutoff 25)
- Energy convergence 10⁻⁶ eV
- Spin polarized calculation for selected phases

Elastic Constants Calculations

Phases	C ₁₁ ,C ₂₂ ,C ₃₃	C ₄₄ ,C ₅₅ ,C ₆₆	C ₁₂ ,C ₁₃ ,C ₂₃	K	G	E	ν	G/K
BCC-A2#1	376	42	232	239	67	185	0.371	0.282
	433	73	135					
BCC-A2#2	330	110	171	224	97	253	0.311	0.433
	estimated	estimated	estimated					
AlN	377	113	129	196	122	304	0.241	0.622
	356	125	99					
FCC-A1#1	322	147	179	225	106	275	0.296	0.473
Cu	181	83	121	140	56	147	0.324	0.399
$M_{23}C_{6}$	459	111	216	297	115	306	0.328	0.388
M ₂ B	440	141	199	282	137	353	0.291	0.486
	504	136	190					
M ₆ C	442	115	203	282	117	308	0.318	0.413
μ-phase	442	92	245	293	95	256	0.354	0.323
	426	94	225					
	406	94	217					
NbNi ₃	290	113	178	206	91	238	0.307	0.442
	305	111	153					
Zphase	278	45	180	189	29	83	0.427	0.154
	250	8	167					

Precipitation Effects

Homogenization scheme to assess the precipitation effects on elastic constants

Eshelby's inclusion theory

Effective Self Consistent Scheme

Iterative scheme

- Multiple inclusion phases allowed
- Only volume fraction and bulk elastic constants used in the scheme

 $C^{*} = (H + C_{M}^{-1})^{-1}$ $H = sum (H_{I,i}^{d} (I - \Omega_{DI,i} H)^{-1}$ $H_{I,i}^{d} = c_{i} \{ (C_{I,i}^{-1} - C_{M}^{-1})^{-1} + C_{M} (I - S_{I,i}^{M}) \}^{-1}$ $\Omega_{DI,i} = C^{*} (I - S_{I,i}^{*})$

Elastic properties of AXM steel

□ Homogenized elastic modulus

Bulk modulus= 228 GPa,Shear modulus= 94 GPaYoung's modulus= 249GPaPoisson's ratio= 0.318

- First principles method brings chemical accuracy for properties calculation with known structure
- □ The inverse process from properties to predict structure remains the greatest challenge to material science
- Two-step approach/Material genome approach
 Properties -> Composition -> prototype library

LatMGA

□ Ordered lattice structures:

- Crystal and Solid Solution
- Common description: { L_i } ⊗ { r_j; σ_j } where { L_i } is the set of lattice symmetry operators { r_j } is the set of lattice basis
 - $\{ \sigma_i \}$ is the set of composition vector

$\hfill\square$ Composition vector σ

- \succ σ = Σ_i η_i ε_i
- \succ Each vector basis ε_i represents an element or a structure unit
- \blacktriangleright The component η_i represents the probability of the basis at the site
- Vacancy is also a basis

□ Material Genome Approach

> The challenge is how to traverse the enormous configuration space

Uniform structure indices are highly desired for data mining

LatMGA: separate lattice from composition

- $\succ \text{ Structure} = \{ \mathsf{L}_i \} \otimes \{ \mathsf{r}_j; \sigma_j \} = [\{ \mathsf{L}_i \} \otimes \{ \mathsf{r}_j \}] \oplus [\{ \mathsf{L}_i \} \otimes \{ \sigma_j \}]$
- Structure is indexed by lattice prototype and composition type
- Observation: any lattice basis sets is a subset of a fine grid insider the unit cell. For any stable structure at room temperature, the grid needs not to be finer than the range of atomic vibration. Therefore, any lattice may be a subset of supercell of a simple lattice such as simple cubic and hexagonal.

LatMGA:

> A systematic approach to index structure prototype

- { # lattice prototype
- { lattice unit type<scc,hcp, etc.>,
- supercell <nxnxn>,
- space group }
- # composition space
- { mask vector,
- composition vectors }
- ✤ }

> Three stage material configuration space exploration

{ lattice prototype discovery:

traverse the structure prototype indices; }

{ composition space discovery:

rules based selection of mask/composition vectors;

combine with lattice prototype to produce structure sample;

structure sample can be evaluated using first principles methods; }

{ material genome approach:

big data analysis on the high dimension structure indices space; inverse map from properties to structure; }

.....

. . .

n	h	20	in	di	CC	
U		as		uı	CC	

Lattice prototype:

space gro	oup:	129 (P4/nmm)						
irreducible sites:								
Site_1	2 c	1/4	1/4	7/8				
Site_2	2 c	1/4	1/4	5/8				
Site_3	2 c	1/4	1/4	1/8				

** it is a subset of 2x2x8 supercell of 1 basis simple cubic lattice casted into space group 129

Composition:

 $\begin{array}{c} \epsilon_1 = \text{Nb}, \ \epsilon_2 = \text{V} \ \epsilon_3 = \text{Cr} \ \epsilon_4 = \text{N} \ \epsilon_5 = \text{Vac} \\ \text{Site}_1 & (0.5 \ 0.5 \ 0 \ 0 \ 0) \\ \text{Site}_2 & (0 \ 0 \ 1 \ 0 \ 0) \\ \text{Site}_3 & (0 \ 0 \ 0 \ 1 \ 0) \end{array}$

<i>#</i> ## са	isted from	SCC-2-2-8	to 129 :: siz	e= 2 2 8 ###
space_	_group 12	9		
origin	2			
Aa1	0.75000	0.25000	0.00000 #	2 a Aa
Ab1	0.75000	0.25000	0.87500 #	4 f Ab
Ac1	0.75000	0.25000	0.75000 #	4 f Ac
Ad1	0.75000	0.25000	0.62500 #	4 f Ad
Ae1	0.75000	0.25000	0.50000 #	2 b Ae
Af1	0.25000	0.25000	0.00000 #	2 c Af
Ag1	0.25000	0.25000	0.12500 #	2 c Ag
Ah1	0.25000	0.25000	0.25000 #	2 c Ah
Ai1	0.25000	0.25000	0.37500 #	2 c Ai
Aj1	0.25000	0.25000	0.50000 #	2 c Aj
Ak1	0.25000	0.25000	0.62500 #	2 c Ak
Al1	0.25000	0.25000	0.75000 #	2 c Al
Am1	0.25000	0.25000	0.87500 #	2 c Am

Progress:

- Tested against all cubic phases found in the <u>Crystallography Open</u> <u>Database</u>
- Excluding wrongful data, all can be indexed using supercell of simple cubic casted into the specific space group and a mask to indicate the closely matched Wyckoff sites (for example, Ag1, Ak1, Am1 sites, a mask vector [00000100101])
- □ We are now in the process of implementing programs to search for un explored masks by combining with basis information of atoms such as atomic size, charge, etc.

Progress:

□ All cubic phases with space group 225 (total 689 valid structures)

- ➤ 304 mapped to SCC-2-2-2
- ➤ 229 mapped to SCC-4-4-4
- > 10 mapped to SCC-6-6-6
- ➤ 133 mapped to SCC-8-8-8
- ➤ 13 mapped to SCC-12-12-12

- Study mechanical properties of all phases found in the 9-12% Cr ferritic steels;
- Search for steel composition with improved mechanical properties.
- Development of the LatMGA method for:
 - Prototype library generation based on composition
 - > Automate structure model generation based on prototype library
 - Automate the properties calculation of structure models
 - Data mining to map properties to composition