Computational and Experimental Development of Novel High Temperature Alloys

2015 Crosscutting Technology and Research Meeting
April 29, 2015

This work was supported by the DOE-FE (AMR program) through Ames Laboratory contract no. DE-AC02-07CH11358
The High Temperature challenge

Higher temperatures \rightarrow Higher energy efficiencies

Challenges –
- High T oxidation
- Moisture
- Creep and high T deformation
- Toughness & manufacturability
- Highly variable coal combustion environments

The problem:
- Are there effective ways of tweaking existing systems?
- Can we develop a new alloy system?

Key metrics:
- High melting temperatures
- Microstructural stability
- Toughness ≥ 20 MPa\cdotm$^{1/2}$
- Oxidative Stability

Ni based alloys approaching limits
Conceptual approach

Rapid screening of phase space: base alloy selection
(Deliverable: semi-empirical model for multicomponent systems)

Characterization & testing of the base alloy
(Deliverable: identify failure modes and alloy requirements)

Alloying additions guided by ab-initio studies
(Deliverable: Chemical modification for enhanced stability)

Microstructural modifications and gradients
(Deliverable: Processing methods for graded microstructures)

Toughness, deformation and high T strength
(Deliverable: Optimizing strength via processing techniques)

Oxidative damage: mechanisms and models
(Deliverable: Establish and improve oxidative limits)

Alloy development by multi-stage hierarchical screening

Ray et. al., JOM 62 (2010) 25

Ray et.al., App Surf Sci 301(2014) 107

Bell et. al., under preparation

Ray et. al., under preparation
Enthalpies of multicomponent alloys

Table: Combinations of Elements

<table>
<thead>
<tr>
<th># of elements</th>
<th>Combinations</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3160</td>
</tr>
<tr>
<td>4</td>
<td>82160</td>
</tr>
<tr>
<td>5</td>
<td>1.58×10^6</td>
</tr>
<tr>
<td>6</td>
<td>2.40×10^7</td>
</tr>
</tbody>
</table>

$$\Delta H = \phi_1 \Delta H_{AB}(\alpha) + \phi_2 \Delta H_{BC}(\beta) + \phi_3 \Delta H_{CA}(\gamma)$$

Individual binaries calculated using Miedema’s equation:

$$\Delta H = c_A c_B \left(f_A^A \Delta H^{i/c}_{AB} + f_B^B \Delta H^{i/c}_{BA} \right)$$

Mass balance constraints:

$$\sum_{i=1}^{3} \phi_i = 1$$

$$\phi_1 \alpha + \phi_3 (1 - \gamma) = x_A$$

$$\phi_2 \beta + \phi_1 (1 - \alpha) = x_B$$

$$\phi_3 \gamma + \phi_2 (1 - \beta) = x_C$$

Alloy selection: the NiAl-Mo system

<table>
<thead>
<tr>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sc</td>
<td>Ti</td>
<td>V</td>
<td>Cr</td>
<td>Mn</td>
<td>Fe</td>
<td>Co</td>
<td>Ni</td>
<td>Cu</td>
</tr>
<tr>
<td>1539</td>
<td>1670</td>
<td>1902</td>
<td>1857</td>
<td>1244</td>
<td>1540</td>
<td>1495</td>
<td>1453</td>
<td>1083</td>
</tr>
<tr>
<td>Y</td>
<td>Zr</td>
<td>Nb</td>
<td>Mo</td>
<td>Tc</td>
<td>Ru</td>
<td>Rh</td>
<td>Pd</td>
<td>Ag</td>
</tr>
<tr>
<td>1526</td>
<td>1852</td>
<td>2467</td>
<td>2617</td>
<td>2200</td>
<td>2250</td>
<td>1963</td>
<td>1552</td>
<td>961</td>
</tr>
<tr>
<td>La</td>
<td>Hf</td>
<td>Ta</td>
<td>W</td>
<td>Re</td>
<td>Os</td>
<td>Ir</td>
<td>Pt</td>
<td>Au</td>
</tr>
<tr>
<td>920</td>
<td>2227</td>
<td>3014</td>
<td>3407</td>
<td>3180</td>
<td>3027</td>
<td>2443</td>
<td>1772</td>
<td>1065</td>
</tr>
</tbody>
</table>

Requisites
- High temperature oxidation resistance
- High thermal stability

Bei & George, Acta Mater 53(2005) 69

Passivating elements
- Al
- Si
- Cr
- Ga
- Ge

High melting + poor oxidation
Low melting + good oxidation
Mix of oxidation and melting & possibly creep strength
Processing and microstructures

- Arc-melted
- Directionally solidified
- Liquid phase sintered
- Stable microstructures at 1500°C (12 hrs)
Fracture toughness of NiAl-Mo alloys

Mo forms the “backbone” for this alloy – creep and toughness

- Toughness of NiAl $\sim 5 \text{ MPa}\cdot\text{m}^{1/2}$
- Toughness of Mo-Si-B alloys $\sim 12 \text{ MPa}\cdot\text{m}^{1/2}$

Fracture toughness ascertained using four point bending method

![Four point bending method diagram]

Force applied perpendicular to the growth direction [(0 0 1) direction]
Fracture toughness of NiAl-Mo alloys

- Fracture toughness of NiAl-15%Mo [drop-cast] ~ 10 MPa·m^{1/2} (J. Kruzic, OSU)
- Fracture toughness of NiAl-15%Mo [DS] ~ 20 MPa·m^{1/2}

Flexural Strength
- Drop-cast ~ 400 MPa
- DS alloys ~ 850 MPa

DS alloys shows a larger strain to failure
Fracture toughness of NiAl-Mo alloys

Presence of Mo dendrite pull-outs indicate a contribution towards toughening.

Some eutectic regions also showed the eutectic lamellae pull-outs.

Bell et al., article under preparation
Fracture toughness of NiAl-Mo alloys

Mo serves to deflect crack path thereby imparting toughening

Mo additions also appear to induce a small amount of plasticity
Effect of temperature on oxidation

Evolution of the oxide scale with temperature

As temperature increases, NiMoO$_4$ regions grow larger, but they start disappearing above 1100 °C. NiAl$_2$O$_4$ and NiO seem to predominate above 1125 °C.
Stability of NiMoO$_4$

Comparisons – spalled vs adherent scale

2 hrs @ 1100 °C

Major differences –

- The amount of NiMoO$_4$ and NiO is drastically reduced in the coupon surface.
- The α-Al$_2$O$_3$ and MoO$_2$ are virtually absent in the spalled scale.
- NiAl$_2$O$_4$ shows up in both cases as a major phase.

A physical model for oxidation

Consider the oxidation of a Mo rich region of the surface.

Initial oxidation of Mo results in the formation of MoO₃ which later volatilizes.

$$\text{Mo} + \frac{3}{2} \text{O}_2 \rightarrow \text{MoO}_3$$

NiMoO₄ forms at the interface along with alumina

$$2\text{MoO}_3 + 2\text{NiAl} + \frac{3}{2}\text{O}_2 \rightarrow 2\text{NiMoO}_4 + \text{Al}_2\text{O}_3$$

NiMoO₄ dissociates progressively

$$\text{NiMoO}_4 \rightarrow \text{NiO} + \text{MoO}_3$$

The NiO reacts with the underlying Al₂O₃ to form the spinel interphase

$$\text{NiO} + \text{Al}_2\text{O}_3 \rightarrow \text{NiAl}_2\text{O}_4$$

NiMoO₄ dissociates: poor oxidation;
NiMoO₄ doesn’t dissociate: $\beta \rightarrow \alpha$ transformation with 20% volume change

Ray et al., article under preparation
Coating methodologies

Coating process: Electrodeposition (Ni) and pack cementation (Al); anneal at 1350°C for 2 hours

Accurate statistical models of electroplating and pack cementation for controlling thickness
Oxidation of NiAl

Pure β-NiAl – Massive scale spallation during cyclic oxidation at 1250°C

Approaches –
- Enhanced melting temperature
- Microstructure

Ray et al., JOM 62 (2010) 65
Alloying additions: computational screening

\[T_m = 0.032 \frac{E^c}{k_B} \]

Rose-Ferrante theory of Universal Binding Curve

\[E^c = x_1 E_1^c + x_2 E_2^c + x_3 E_3^c - \Delta H_f \]

- Ab-initio calculations using VASP
- GGA potentials
- 54 atom unit cell (3 x 3 x 3)
Ab-initio studies on the role of PGM additions

\[
T_m = 0.032 \frac{E^c}{k_B}
\]

\[
E^c = x_1 E_{1}^c + x_2 E_{2}^c + x_3 E_{3}^c - \Delta H_f
\]

Formation enthalpies estimated using the VASP code with GGA potentials

<table>
<thead>
<tr>
<th>Metal</th>
<th>Cohesive E (kJ/mol)</th>
<th>Metal</th>
<th>Cohesive E (kJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>327</td>
<td>Ir</td>
<td>670</td>
</tr>
<tr>
<td>Ni</td>
<td>428</td>
<td>Pd</td>
<td>376</td>
</tr>
<tr>
<td>Rh</td>
<td>554</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Effect of PGM additions on oxidation

Pure β-NiAl – Massive scale spallation during cyclic oxidation at 1250°C

Addition of 6 atom% of PGM results in a significant increase in the oxidation resistance

Ray et al., JOM 62 (2010) 65
The role of grain size

β-NiAl

β-NiAl + 9% Ir

β-NiAl + 9% Ir + 0.05% Hf

Brammer et.al., article under preparation
Failure mechanisms for the coatings

- Pre-existing cracks provide oxidation pathways.
- Integrity is a function of NiMoO$_4$ formation vs Al$_2$O$_3$ coverage.
- T dependence is function of Al$_2$O$_3$ growth rate and MoO$_3$ vapor pressure
Oxidation behavior of coated alloys 1150°C

Optimal coating approach:

Double layered coatings

Pre-oxidized at 1100°C for 5 hours

Bell et al., article under preparation
Perspectives

• Semi-empirical techniques assisted in initial selection; further work resulted in an alloy with high melting temperature and adequate toughness, with oxidatively stable coatings.

• Computational methods were not used for down-selecting materials on the basis of oxidation resistance, due to a relatively small playground once criteria for high melting temperature and tough “backbone” phase were fulfilled.
Expanding the toolbox

- Need for more accurate models for materials genomics, especially with multiple principal components which presents a greater complexity of challenges
- Standard DFT based approaches are more suited to ordered materials rather than disordered solid solutions like HEAs
- Looking ahead – use computational tools for oxidation resistance, while selecting alloy systems that retain structural stability with temperature (Entropically Stabilized Alloys – studied using KKR-CPA) when oxidized (system selection using new computational tools – GSSNEB)
Short Range Ordering in N-component Alloy

- Atomic SRO can be calculated using *all-electron, first-principles KKR-CPA-based linear-response code* addressing inhomogeneous chemical fluctuations.
- We can uniquely identify atomic SRO in alloy using *Concentration Wave analysis* using an analytic N-dimensional transform for Gibbs’ (chemical) space.
- Approach was tested and verified on
 - Ternary A2 (bcc) Nb$_{25}$Al$_{25}$Ti$_{50}$
 - Quinary A1 (fcc) Ni$_{20}$Cu$_{20}$Al$_{20}$Ti$_{20}$Zr$_{20}$
Ti$_{50}$Nb$_{25}$Al$_{25}$: SRO unstable eigenmodes

SRO indicate the unstable chemical modes
All mode determined simultaneously, just like for (second-order) phonon modes.

Lowers energy

Costs energy

-0.1
0
0.05
0.1

$S^{(2)}(k)$

Nb-Ti
Nb-Al
Al-Ti

-0.1
-0.05
0
0.05
0.1

Temperature Scale
Theory spinodal $T_{sp} = 1750$ K
Experimental B2 order: 1713 K

First unstable mode (H-point)
$k_0 \rightarrow <100> = <111>$

Strong partially-ordered B2 (H-pt) ordering

Alloy-specific partially-ordered B2 phase

B2
<111>
Nb/Al

SRO in Quinary NiTiZrAlCu

Direct Calculation KKR-CPA
Formation Energy = +16.4 mRyd
$T_c = 1610$ K

Experimental findings – HEA by MA, multiphase intermetallics by casting

SRO: $k_0 = [000]$ Clustering
SRO: Unstable Modes (Zr-Cu)
$S^{(2)}$: competing Zr-Al, Zr-Cu, Ti-Al
$T_{sp} = 1510$ K (estimated)

Real Space decomposition of $S^{(2)}$ upto 5-shells.

<table>
<thead>
<tr>
<th>Shell_{RS}/Modes</th>
<th>Zr-Al</th>
<th>Zr-Cu</th>
<th>Ti-Al</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S_{0}^{(2)}$</td>
<td>+10.4</td>
<td>+9.39</td>
<td>+8.55</td>
</tr>
<tr>
<td>$S_{1}^{(2)}$</td>
<td>-0.07</td>
<td>+2.37</td>
<td>-0.55</td>
</tr>
<tr>
<td>$S_{2}^{(2)}$</td>
<td>-0.01</td>
<td>-1.92</td>
<td>-0.05</td>
</tr>
<tr>
<td>$S_{3}^{(2)}$</td>
<td>-0.10</td>
<td>-4.27</td>
<td>+0.12</td>
</tr>
<tr>
<td>$S_{4}^{(2)}$</td>
<td>-0.01</td>
<td>+0.50</td>
<td>-0.01</td>
</tr>
</tbody>
</table>
Kinetic Barriers for MnBi: HTP to LTP

- In HTP, interstitial Mn couples anti-ferromagnetic and reduces magnetization.
- Interstitial-vacancy pair (Mn\textsubscript{i}-V\textsubscript{Mn}) only costs 0.3 eV when separated by 1 atom.
- Barrier in between is as high as 1.7-2 eV, which limits kinetic for HTP → LTP.
- Kinetically stable HEA desirable for mechanical properties.
Summary

Thermodynamic stability of competing phases

Synthesis: different degree of deviation from equilibrium

Thermal analysis and phase evolution, Tm (DTA, DSC)

Oxidation resistance (cyclic and isothermal kinetics)

Structural analysis – microstructures, ordering (SEM, TEM, PXRD, synchrotron)

Thermo-kinetic modeling and alloy optimization

“Explore the development of graded oxidation resistant microstructures with high-entropy precursors”

Theoretical models for guiding experimental design

Experimental: synthesis and characterization

Optimized high-entropy alloy