# Computational and Experimental Development of Novel High Temperature Alloys

### Matthew J. Kramer, Tyler R. Bell, Pratik K. Ray, Mufit Akinc Prashant Singh, Linlin Wang and Duane D. Johnson

2015 Crosscutting Technology and Research Meeting April 29, 2015

This work was supported by the **DOE-FE (AMR program)** through Ames Laboratory contract no. DE-AC02-07CH11358





# The High Temperature challenge





#### Higher temperatures $\rightarrow$ Higher energy efficiencies

Challenges -

- High T oxidation
- Moisture
- Creep and high T deformation
- Toughness & manufacturability
- Highly variable coal combustion environments

#### The problem:

- Are there effective ways of tweaking existing systems?
- Can we develop a new alloy system?

#### Key metrics:

- High melting temperatures
- Microstructural stability
- Toughness  $\geq$  20 MPa•m<sup>1/2</sup>
- Oxidative Stability





# Conceptual approach





IOWA STATE

UNIVERS

# Enthalpies of multicomponent alloys

| # of elements | Combinations           |
|---------------|------------------------|
| 3             | 3160                   |
| 4             | 82160                  |
| 5             | 1.58 x 10 <sup>6</sup> |
| 6             | 2.40 x 10 <sup>7</sup> |



$$\Delta H = \phi_1 \Delta H_{AB}(\alpha) + \phi_2 \Delta H_{BC}(\beta) + \phi_3 \Delta H_{CA}(\gamma)$$
  
Individual binaries calculated  
using Miedema's equation  
$$\Delta H = c_A c_B \left( f_B^A \Delta H_{AB}^{i/c} + f_A^B \Delta H_{BA}^{i/c} \right)$$
  
$$\sum_{i=1}^3 \phi_i = 1$$
  
Mass balance  
constraints

$$\phi_1 \alpha + \phi_3 (1 - \gamma) = x_A$$
  
$$\phi_2 \beta + \phi_1 (1 - \alpha) = x_B$$
  
$$\phi_3 \gamma + \phi_2 (1 - \beta) = x_C$$

Ray et.al., J. Alloys Compds. 62 (2010) 25





# Alloy selection: the NiAl-Mo system

| 3    | 4         | 5         | 6    | 7         | 8    | 9         | 10   | 11   |
|------|-----------|-----------|------|-----------|------|-----------|------|------|
| Sc   | Ti        | V         | Cr   | <u>Mn</u> | Fe   | Co        | Ni   | Cu   |
| 1539 | 1670      | 1902      | 1857 | 1244      | 1540 | 1495      | 1453 | 1083 |
| Y    | Zr        | <u>Nb</u> | Mo   | <u>Tc</u> | Ru   | Rh        | Pd   | Ag   |
| 1526 | 1852      | 2467      | 2617 | 2200      | 2250 | 1963      | 1552 | 961  |
| La   | <u>Hf</u> | Ta        | W    | Re        | Os   | <u>lr</u> | Pt   | Au   |
| 920  | 2227      | 3014      | 3407 | 3180      | 3027 | 2443      | 1772 | 1065 |

<u>Requisites</u>

- High temperature oxidation resistance
- High thermal stability

High melting + poor oxidation Low melting + good oxidation Mix of oxidation and melting & possibly creep strength

Haenschke et.al., J. Phys. 240(2010) 012063 Bei & George, Acta Mater 53(2005) 69





IOWA STATE UNIVERSITY

Al

# **Processing and microstructures**





Mo forms the "backbone" for this alloy – creep and toughness Toughness of NiAl ~ 5 MPa•m<sup>1/2</sup> Toughness of Mo-Si-B alloys ~ 12 MPa•m<sup>1/2</sup>

Fracture toughness ascertained using four point bending method



Force applied perpendicular to the growth direction [ (0 0 1) direction]



THE Ames Laboratory

S. DEPARTMENT OF ENERGY

Creating Materials & Energy Solutio















Fracture surface of drop-cast alloy

Presence of Mo dendrite pull-outs indicate a contribution towards toughening



Fracture surface of DS alloy

Some eutectic regions also showed the eutectic lamellae pull-outs

Bell et.al., article under preparation















 11 42 BEC
 15kV
 X7,000
 2xm
 13 42 SE1

Mo additions also appear to induce a small amount of plasticity



X3,500

5µm

15kU





## Effect of temperature on oxidation



Ray et.al., Appl. Surf. Sci. 301(2014) 107





## Evolution of the oxide scale with temperature



1000 °C



1075 °C



1100 °C



1125 °C



1200 °C

Oxidation time: 30 minutes

As temperature increases, NiMoO<sub>4</sub> regions grow larger, but they start disappearing above 1100 °C

NiAl<sub>2</sub>O<sub>4</sub> and NiO seem to predominate above 1125 °C





# Stability of NiMoO<sub>4</sub>







# Comparisons – spalled vs adherent scale



Major differences –

- The amount of NiMoO<sub>4</sub> and NiO is drastically reduced in the coupon surface
- The α-Al<sub>2</sub>O<sub>3</sub> and MoO<sub>2</sub> are virtually absent in the spalled scale.
- NiAl<sub>2</sub>O<sub>4</sub> shows up in both cases as a major phase.



Ray et.al., Appl. Surf. Sci. 301(2014) 107



# A physical model for oxidation



NiMoO<sub>4</sub> dissociates progressively

 $NiMoO_4 \rightarrow NiO + MoO_3$ 

```
The NiO reacts with the underlying Al_2O_3 to form the spinel interphase
```

 $NiO + Al_2O_3 \rightarrow NiAl_2O_4$ 

NiMoO<sub>4</sub> dissociates: poor oxidation; NiMoO<sub>4</sub> doesn't dissociate:  $\beta \rightarrow \alpha$ transformation with 20% volume change Consider the oxidation of a Mo rich region of the surface.

Initial oxidation of Mo results in the formation of  $MoO_3$  which later volatilizes.

 $Mo + 3/2 O_2 \rightarrow MoO_3$ 

NiMoO<sub>4</sub> forms at the interface along with alumina

 $2MoO_3 + 2NiAl + 3/2O_2 \rightarrow 2NiMoO_4 + Al_2O_3$ 

Ray et.al., article under preparation





# **Coating methodologies**



Coating process: Electrodeposition(Ni) and pack cementation (Al); anneal at 1350°C for 2 hours

Accurate statistical models of electroplating and pack cementation for controlling thickness





Mass Gain (mg)

# **Oxidation of NiAl**





## Alloying additions: computational screening





## Ab-initio studies on the role of PGM additions





### Effect of PGM additions on oxidation

THE Ames Laboratory

Creating Materials & Energy Solution

.S. DEPARTMENT OF ENERGY





## The role of grain size



β-NiAl



β-NiAl + 9% Ir



 $\beta$ -NiAl + 9% Ir + 0.05% Hf



Brammer et.al., article under preparation



β-NiAl + 9% Ir after 100 hours at 1300°C

β-NiAl + 9% Ir + 0.05% Hf after 100 hours at 1300°C





# Failure mechanisms for the coatings







- Pre-existing cracks provide oxidation pathways.
- Integrity is a function of NiMoO<sub>4</sub> formation vs Al<sub>2</sub>O<sub>3</sub> coverage.
- T dependence is function of Al<sub>2</sub>O<sub>3</sub> growth rate and MoO<sub>3</sub> vapor pressure





## Oxidation behavior of coated alloys 1150°C



Bell et.al., article under preparation





- Semi-empirical techniques assisted in initial selection; further work resulted in an alloy with high melting temperature and adequate toughness, with oxidatively stable coatings.
- Computational methods were not used for down-selecting materials on the basis of oxidation resistance, due to a relatively small playground once criteria for high melting temperature and tough "backbone" phase were fulfilled





# Expanding the toolbox

- Need for more accurate models for materials genomics, especially with multiple principal components which presents a greater complexity of challenges
- Standard DFT based approaches are more suited to ordered materials rather than disordered solid solutions like HEAs
- Looking ahead use computational tools for oxidation resistance, while selecting alloy systems that retain structural stability with temperature (Entropically Stabilized Alloys – studied using KKR-CPA) when oxidized (system selection using new computational tools – GSSNEB)



# Short Range Ordering in N-component Alloy

- Atomic SRO can be calculated using *all-electron, first-principles KKR-CPA-based linear-response code* addressing inhomogeneous chemical fluctuations.
- We can uniquely identify atomic SRO in alloy using Concentration Wave analysis using an analytic N-dimensional transform for Gibbs' (chemical) space.
- Approach was tested and verified on
  - Ternary A2 (bcc) Nb<sub>25</sub>Al<sub>25</sub>Ti<sub>50</sub>
  - Quinary A1 (fcc)  $Ni_{20}Cu_{20}Al_{20}Ti_{20}Zr_{20}$





# Ti<sub>50</sub>Nb<sub>25</sub>Al<sub>25</sub>: SRO unstable eigenmodes



D.D. Johnson et al., Phil Mag. Lett 79, 551 (1999)



# SRO in Quinary NiTiZrAlCu

Direct Calculation KKR-CPA Formation Energy = +16.4 mRyd T<sub>c</sub> = 1610 K Experimental findings – HEA by MA, multiphase intermetallics by casting

SRO:  $k_0 = [000]$  Clustering SRO: Unstable Modes (Zr-Cu) S<sup>(2)</sup>: competing Zr-Al,Zr-Cu,Ti-Al T<sub>sp</sub> = 1510 K (estimated)





# Kinetic Barriers for MnBi: HTP to LTP



- In HTP, interstitial Mn couples anti-ferromagnetic and reduces magnetization
- Interstitial-vacancy pair ( $Mn_i$ - $V_{Mn}$ ) only costs 0.3 eV when separated by 1 atom.
- Barrier in between is as high as 1.7-2 eV, which limits kinetic for HTP  $\rightarrow$  LTP
- Kinetically stable HEA desirable for mechanical properties.



# Summary



