

Power Systems Advanced Crosscutting Research Program: Innovative Process Technologies Task 3.0 – Materials: Design & Manufacturing Process Development

2015 NETL Crosscutting Research Review Meeting

Program Acknowledgments

Strategic Center for Coal, Power Systems Advanced Crosscutting Research, ORD IPT Program:

Task 3.0 – Materials: Design & Manufacturing Process Development.

- Robert Romanosky
- Charles Miller
- Vito Cedro

Materials: Design & Manufacturing Process Development

Advanced Martensitic-Ferritic Steels

Jeffrey Hawk, Paul Jablonski, Gordon Holcomb

Superalloy Design & Development

Paul Jablonski, Joseph Licavoli, Jeffrey Hawk, Gordon Holcomb

Advanced Fossil Energy Concepts

Joseph Licavoli, Paul Jablonski, Jeffrey Hawk, Michael Gao, Gordon Holcomb

Computational Aspects in Alloy Design & Life Predicition

You-hai Wen, Tian-le Cheng, Michael Gao

Joseph Tylczak Casey Carney John Sears

Chris Powell Ed Argetsinger Joe Mendenhall Richard Gregory Dennis Burkey Jeff Briscoe

Development of an Improved Creep Resistant Fe-9% Cr Steel

Jeffrey A. Hawk, Paul D. Jablonski and Gordon R. Holcomb

2015 NETL Crosscutting Research Review Meeting

General Background Martensitic Steels

- □ Ferritic/Martensitic Cr steels form the backbone of current steam delivery systems.
- These alloys are less expensive to produce & in general can be recycled.
- □ CrMoV, NiCrMoV & steels with < 5% Cr make up the majority in tonnage in steam power plants operated < 570°C.
- In the hotter sections of the boiler & steam turbine, i.e., temperatures greater than 570°C, advanced 9-12% Cr steels will need to be used.
- At the current time, <u>620°C</u> is the approximate projected maximum use temperature due to concerns about the longterm microstructural instability of the heat resistant steel.

Recent Martensitic Steel Developments

1950's to date – Low alloy creep resisting steels

- 2¼CrMo; CrMoV
 - Ferritic structure, limited carbide strengthening
 - Applications up to about 540 570°C maximum

1980's development – P91 or "Modified 9%Cr" steel

- Introduced from early 1990's onwards
- Coal plant boiler headers and drums (UK first), steam pipework and HRSG applications worldwide
 - Martensitic structure
 - Fine scale lath structure for increased creep strength
 - Carbide precipitate chains on lath boundaries
 - Vanadium modified to add finer-scale network of VN/MX precipitates
 - Applications generally up to about 580°C (or higher if at low stress)

1990 - 2000 - P92 steel

- Replace molybdenum with tungsten in P91: Some strength increase
- Applications e.g. 600°C main steam, 620°C hot steam reheat

Computational & Experimental Alloy Design & Process Development Approach

- Model & design alloys using computational thermodynamics software (ThermoCalc) to develop the phases required for creep strength & to maintain the martensitic nature of the steel.
- □ Formulate, melt & cast alloy heats for each composition using best melting practice for alloy formulation.
- Homogenize each alloy according to its own <u>computationally optimized</u> heat treatment schedule developed from thermodynamic (ThermoCalc) & kinetic (DICTRA) modeling approach.
- □ Fabricate alloys into plate form through standard hot forging & rolling operations.
- Develop desired microstructure features & steel strength through normalizing & tempering heat treatments.
- □ Assess creep & tensile properties against COST alloys

General Technical Approach

- Understand basic high temperature strengthening mechanisms & how to preserve strengthening effect through microstructural control.
- □ Achieve balance between the following competing effects:
 - Necessary <u>C</u>, <u>V</u>, <u>Nb</u>, (and/or <u>Ta</u>) and <u>N</u> to generate MX (M: is metal and X: is C/N), thereby, slowing down dislocation movement in the matrix during creep.
 - Balanced amount of <u>Mo</u> and <u>W</u> for solution & precipitation hardening (with Cr) by M₂₃C₆ and Laves phase.
 - Addition of <u>Co</u>, <u>Cu</u>, <u>Mn</u>, and/or <u>C</u> to suppress δ-ferrite & to provide additional precipitate strengthening (<u>Cu</u>) & oxidation resistance (<u>Mn</u>).
 - Addition of <u>B</u> to stabilize $M_{23}C_6$ precipitates, and thus, help to stabilize the sub-grain structure.
 - Higher level of <u>Cr</u> for oxidation resistance (however, Cr additions significantly greater than 9% reduce creep strength).
 - Addition of <u>Si</u> level and/or <u>RE</u> elements to improve oxidation resistance.

Agamennone et. al. Acta Mater. (2006), Knezevic et al. Mater. Sci. Eng. A. (2008), Wang et al. Mater. Sci. Eng. A. (2009), Yin & Jung, J. Mater. Pro. Technol. (2009), and Chilukuru et al. Mater Sci. Eng. A. (2009).

Fundamentals of CPJ-7 Design

Microstructural Hierarchy of 9-12%Cr Steels

- **1.** Prior austenite grain with associated grain boundaries.
- 2. Packet boundaries
- 3. Block boundaries
- 4. Lath boundaries
- 5. M₂₃C₆ carbides to stabilize lath, block, packet, and PAG boundaries
- 6. MX carbides to provide obstacles to dislocation motion
- 7. Dislocations

The breakdown of any of these microstructural features will destabilize the alloy and lead to increased creep rate over time. The goal of alloy design is to slow down the destabilization of these features starting with the MX and $M_{23}C_6$ particles.

F. Abe, "Metallurgy for Long-term Stabilization of Ferritic Steels for Thick Section Boiler Components In USC Power Plants at 650°C," Proceedings of the 8th Liege Conference, (2006), pp. 965-980.

Microstructural Stability of 9-12%Cr Steels

USC Materials Development Experience

Many competing effects occur in heat resistant steels of the 9% Cr variety. Past experience has shown that the instability of any of the following, Z-phase, Laves, MX and/or M₂₃C₆, can cause an unexpected decrease in rupture stress as a function of time. The goal of alloy design is to slow down the destabilization of these features starting with the MX and M₂₃C₆ particles.

Heat Resistant Steels for 650°C Power Plants

NETL alloy manufacturing approach focuses on homogenization step in which the incremental liquid chemistry is used to characterize the entire resulting solid inhomogeneity.

Critical here is that the homogenization is taken to an acceptably uniform level. This is what gives the steel long term microstructural stability.

A plot of wt. % Mo vs. Distance (m) in the ascast condition. It can be seen that there is quite significant difference in Mo weight fraction in the region equivalent to the center of, or ½, the *sdas* length.

NETL

2015 Crosscutting Technology Research Review Meeting, April 29, 2015

Heat Resistant Steels for 650°C Power Plants

NETL alloy manufacturing approach focuses on homogenization step in which the incremental liquid chemistry is used to characterize the entire resulting solid inhomogeneity.

Critical here is that the homogenization is taken to an acceptably uniform level. This is what gives the steel long term microstructural stability.

A plot of wt. % Mo vs. Distance (m) in the ascast condition. It can be seen that there is quite significant difference in Mo weight fraction in the region equivalent to the center of, or ½, the *sdas* length.

2015 Crosscutting Technology Research Review Meeting, April 29, 2015

Summary of Major 9%-12% Cr Steels Versus CPJ-7 Alloys

Chemistry														
Material	С	Mn	Si	Ni	Cr	Мо	V	Nb	N	W	В	Со	Fe	Та
COST FB2	0.13	0.30	0.08	0.05	9.30	1.50	0.20	0.05	0.026		0.01	1.00	Bal	
COST E	0.12	0.45	0.10	0.74	10.40	1.10	0.18	0.045	0.05	1.00			Bal	
COST B2	0.18	0.06	0.10	0.09	9.28	1.54	0.29	0.06	0.02		0.01		Bal	
CPJ-7	0.15	0.41	0.09	0.27	9.83	1.26	0.21	0.056	0.020	0.48	0.0100	1.48	Bal	0.28
CPJ-7B	0.15	0.29	0.15	0.22	9.81	1.46	0.20	0.059	0.025	0.43	0.0078	1.53	Bal	0.20
CPJ-7C	0.16	0.47	0.11	0.22	9.95	1.34	0.19	0.061	0.022	0.49	0.0086	1.59	Bal	0.20
CPJ-7D	0.16	0.43	0.10	0.22	10.12	1.31	0.21	0.054	0.024	0.53	0.0083	1.56	Bal	0.24
CPJ-7E	0.15	0.42	0.12	0.21	9.99	1.35	0.20	0.049	0.022	0.53	0.0087	1.51	Bal	0.28

The following elements were also found in the CPJ-7 Alloys: Ti (<0.004%), Al (<0.02%), P (<0.003%), Cu (<0.003%), O (<36 ppm), and S (<58 ppm).

Alloy	Mo _(Eq)	C + N	В
COST FB2	1.50	0.156	100*
COST E	1.60	0.170	
COST B2	1.54	0.200	100*
CPJ-7	1.501	0.170	100
CPJ-7B	1.675	0.175	78
CPJ-7C	1.585	0.182	86
CPJ-7D	1.575	0.185	83
CPJ-7E	1.595	0.172	87

Mo_(Eq) = % Mo + ½ % W

Summary of Tensile Mechanical Behavior of CPJ-7 Alloys

Larson Miller Parameter for COST E Steel & Wrought CPJ-7 Steel

Larson-Miller Parameter plot for COST E at temperatures from 1050°F (565.5°C) to 1200°F (648.9°C). CPJ-7 testing performed at 650 IC only.

2015 Crosscutting Technology Research Review Meeting, April 29, 2015

NETL

Larson Miller Parameter for COST E Steel & Wrought CPJ-7 Steel

Larson-Miller Parameter plot for COST E at temperatures from 1050°F (565.5°C) to 1200°F (648.9°C). CPJ-7 testing performed at 650 IC only.

Wrought CPJ-7 vs Current Materials Used for Steam

Turbine Rotors in Power Plants

CPJ7 vs State-of-Art Experimental Boiler Steel MARBN

NIMS 9Cr steel : MARBN

MARBN : **MAR**tensitic 9Cr steel strengthened by **B**oron and MX **N**itrides

MARBN : 9Cr-3W-3Co-VNb, 120 - 150 ppm B & 60 - 90 ppm N P92 : 9Cr-0.5Mo-1.8W-VNb, 20 ppm B & 500 ppm N

Comparison Structure CPJ-7 Steel vs. COST B2

Microstructure Feature	COST B2	CPJ-7		
Matrix Phase	Martensite	Martensite + Retained Ferrite or Recrytallized Grains		
Prior Austenite Grain (PAG)	1 mm	6 – 15 µm		
Lath Size	1 – 2 µm	1 – 2 µm		
Precipitates	M ₂₃ C ₆	M ₂₃ C ₆ + Laves		
Precipitate Location	Grain Boundaries (GB)	GB + Grain Interiors		
Dislocation Density	High (due to martensitic transformation)	Mixed – Low in equiaxed grain regions & high in martensitic regions		
Probable Creep Resistance Mechanisms	Boundary precipitates & high dislocation density*	Boundary precipitates, including Laves*		

Fireside Corrosion

- Comparison of air-fired and oxy-fired (hot gas recycle case) conditions to examine
 - The effects of temperature (650 to 800°C)
 - Alkali sulfate flux to the alloy surface
 - Mo content in Ni-22Cr alloys
 - NETL developed alloy CPJ7B in comparison to T92
- Flue gas compositions
 - Air-firing: N_2 -14CO₂-9H₂O-2.5O₂-0.3SO₂
 - Oxy-firing: CO_2 -8N₂-20H₂O-2.5O₂-0.9SO₂ (hot gas recycle)
 - Simplified from earlier research, as flue gas compositions were not found to change overall corrosion rates (at 700°C)

Alloys and Ash Compositions (wt%)

Alloy	Fe	Cr	Ni	Со	Мо	С	Si	Ti	Al	Mn	V	Nb+Ta	Cu	Other
T92	Bal	9.08	0.25	0.01	0.45	0.081	0.09		0.01	0.40	0.21	0.07		1.80 W
СРЈ7В	Bal	9.83	0.27	1.48	1.26	0.15	0.09	0.004	< 0.02	0.41	0.21	0.336	0.03	0.48
740H	0.7	25	Bal	20	0.5		0.15	1.35	1.35	0.3		1.5		
NiCrMo1		22.18	Bal		0.02	0.043		0.01	0.08			0.01	0.01	11 ppm S
NiCrMo2		22.04	Bal		0.99	0.050			0.07			0.02	0.01	4 ppm S
NiCrMo3		22.04	Bal		7.77	0.052			0.07			0.01		11 ppm S

* Met target Cr, Mo, and C levels in Ni-22Cr-xMo model alloys. Low S levels obtained.

Ash Compositions

- Maintain 3:1 ratio of (Na,K)₂SO₄:Fe₂O₃ as found in lowest melting point alkali iron trisulfates
- Different alkali sulfate fluxes to alloy surfaces

	ID	Al ₂ O ₃	SiO ₂	Fe ₂ O ₃	Na ₂ SO ₄	K ₂ SO ₄
	SCM	0	0	25	37.5	37.5
ng	S80	10	10	20	30	30
	S60	20	20	15	22.5	22.5
e	S40	30	30	10	15	15
es	S20	40	40	5	7.5	7.5

Metal Loss Results (240 h)

CPJ7B compared to P92C

(Comparable, or less, metal loss for CPJ7B than P92C)

NETL

24 h Air-Fired Exposure of T92 at 700°C w/20% Alkali Iron Trisulfate Ash

Air Oxidation

"Wrought" CPJ-7 9% Cr Steel

- Identified promising chemistry for "wrought" ferritic-martensitic steel, CPJ-7, based on controlling minor alloying additions (C, Cu, Ta) and B/N levels.
- Developed manufacturing approach (specifically homogenization cycle prior to TMP) to consistently produce CPJ-7.
- Tested CPJ-7 chemistry robustness by varying select combinations of alloying additions: Mo_(eqv); C + N level; B level – producing and testing five additional CPJ-7 or derivative heats.
- Assessed other minor element additions and extent of those additions on tensile and creep strength of CPJ-7 base alloy.
- CPJ-7 creep performance compares favorably to MARBN experimental boiler steel.
- Oxidation resistance in air and air/H₂O mixture very good compared to P92.

Brief Description of Cast CPJ-7 Steel

- Previous research identified NETL martensitic-ferritic steel CPJ-7. A "wrought" product was manufactured.
- NETL "wrought" CPJ-7 steel exhibited superior creep strength compared to commercially designed, thermo-mechanically processed and heat treated 9% Cr martensitic-ferritic steels used for airfoils, rotors, and other wrought components in a steam turbine as well as piping and other thermo-mechanically processed components in the combustion boiler.
- NETL applied same alloy design rationale to develop <u>cast</u> martensitic-ferritic 9% Cr steel. Subsequent alloy homogenization using NETL algorithmic approach with subsequent martensitic steel heat treatment produced <u>cast</u> version of CPJ-7 superior to any existing commercially available <u>cast</u> 9% Cr martensitic-ferritic steel or derivatives.

Wrought vs. Cast Manufacturing

Wrought Manufacturing Steps:

- 1. Alloy Design
- 2. Melt Processing
- 3. Homogenization
 - Improve chemical uniformity within the matrix structure

4. Thermo-mechanical Processing

- Physical manipulation of the grain structure for mechanical property design & refinement
- More homogeneous "physical" structure – i.e., a more consistent & uniform grain size

5. Heat Treatment for Strength

Cast Manufacturing Steps:

- 1. Alloy Design
- 2. Melt Processing
- 3. Homogenization
 - Improve chemical uniformity within the matrix structure

4. Heat Treatment for Strength

- Major difference is no manipulation of the "physical" grain structure of the resulting solid body.
- Limited ability to develop strength in the solid body except through alloy design & heat treatment.

Martensitic Steel Ingot Casting

Large-scale Steel Casting for USC 650°C Power Plants:

A heat of CPJ-7 was formulated and cast utilizing NETL's "enhanced slow cooling" methodology. The mold was submerged in loose sand to help contain the heat of the molten steel, and thereby, slow the cooling rate substantially in order to better simulate the slow cooling conditions of a thick wall, full-size steam turbine casings. The fully heat treated ingot was then bisected along the diameter. The halves were then sectioned into 0.4" thick slabs from which 0.4" square bars were cut. From these squares round tensile bars were subsequently machined into traditional tensile/creep specimens.

NETL

Cast CPJ-7 Preliminary Mechanicals

Duplicate tests of cast CPJ-7 at RT, 600°C & 650°C, plus one additional test at 600°C for equiaxed solidification zone. Note the relative property equivalence of the two solidification zones.

	Alloy	Heat Treatment	Test Conditions (°C)	Yield Stress (MPs)	Tensile Strength (MPa)	Elongation (%)	Reduction in Area (%)
			DT	808	966	17	48
	CPJ 7A Columnar		K I	803	964	17	42
			COO	463	539	28	74
		HIST	600	470	545	33	76
			650	379	446	30	81
s more	likely to be f	ound in equia	ixed	384	449	36	80
– last l	bit of molten	metal to solic	lify.	809	970	18	39
			KI	813	847*	2*	5*
				463	484*	3*	25*
	CPJ 7A Equiaxed	HTS ⁺	600	466	538	22	62
				468	542	29	73
			650	371	443	31	79
			650				

2015 Crosscutting Technology Research Review Meeting, April 29, 2015

Defect region

Comparison Between Wrought & Cast CPJ-7

Comparison Between Wrought & Cast CPJ-7 with Representative Commercial Steels

Larson-Miller Parameter plot for COST E & cast CB2 at temperatures from 1050°F (565.5°C) to 1200°F (648.9°C). CPJ-7 (cast (x) & wrought (+)) testing performed at 650°C only.

Wrought vs. Cast CPJ-7 Creep Results at 650°C

Wrought Alloy	Stress (ksi)	Stress (MPa)	Time to Rupture (hours)	
CPJ-7	25.0	172.4	1,454	
CPJ-7B	25.0	172.4	1,514	
CPJ-7C	25.0	172.4	1,774	
CPJ-7D	25.0	172.4	1,732	
CPJ-7	22.5	155.1	2,344	
CPJ-7D	22.5	155.1	2,239	
CPJ-7	20.0	137.9	5,388	
CPJ-7E	20.0	137.9	4,210	
CPJ-7	18.0	124.1	12,727	
Cast Alloy	Stress (ksi)	Stress (MPa)	Time to Rupture (hours)	
Cast Alloy CPJ-7K	Stress (ksi) 25.0	Stress (MPa) 172.4	Time to Rupture (hours) 828	
Cast Alloy CPJ-7K CPJ-7K	Stress (ksi) 25.0 25.0	Stress (MPa) 172.4 172.4	Time to Rupture (hours) 828 869	
Cast Alloy CPJ-7K CPJ-7K CPJ-7K CPJ-7K	Stress (ksi) 25.0 25.0 25.0	Stress (MPa) 172.4 172.4 172.4	Time to Rupture (hours) 828 869 886	
Cast Alloy CPJ-7K CPJ-7K CPJ-7K CPJ-7K CPJ-7K	Stress (ksi) 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	Stress (MPa) 172.4 172.4 172.4 155.1	Time to Rupture (hours) 828 869 886 2,469+	
Cast Alloy CPJ-7K CPJ-7K CPJ-7K CPJ-7K CPJ-7K CPJ-7A	Stress (ksi) 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	Stress (MPa) 172.4 172.4 172.4 155.1 155.1	Time to Rupture (hours) 828 869 886 2,469 ⁺ 1,582	
Cast Alloy CPJ-7K CPJ-7K CPJ-7K CPJ-7K CPJ-7K CPJ-7A CPJ-7K	Stress (ksi) 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 20.0	Stress (MPa) 172.4 172.4 172.4 155.1 155.1 137.9	Time to Rupture (hours) 828 869 886 2,469 ⁺ 1,582 2,467 ⁺	
Cast Alloy CPJ-7K CPJ-7K CPJ-7K CPJ-7K CPJ-7A CPJ-7A CPJ-7K CPJ-7A	Stress (ksi) 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 20.0 20.0	Stress (MPa) 172.4 172.4 172.4 155.1 155.1 137.9 137.9	Time to Rupture (hours) 828 869 886 2,469 ⁺ 1,582 2,467 ⁺ 3,714	
Cast Alloy CPJ-7K CPJ-7K CPJ-7K CPJ-7K CPJ-7A CPJ-7A CPJ-7A CPJ-7A	Stress (ksi) 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 20.0 17.5	Stress (MPa) 172.4 172.4 172.4 155.1 155.1 137.9 137.9 120.7	Time to Rupture (hours) 828 869 886 2,469+ 1,582 2,467+ 3,714 860+	

⁺ Creep tests still underway as of 4/29/2015

Cast 9% Cr Martensitic Steel Chemistry

• This new <u>cast</u> 9% Cr martensitic steel has a unique chemistry, alloy design philosophy, and microstructural control (i.e., computationally based homogenization heat treatment schedule) unlike any other alloy in it's class.

• Nominal/preferred alloy chemistry:

	С	Mn	Si	Ni	Cr	Мо	V	Nb	N	W	В	Со	Fe	Та
CPJ-7	0.15	0.40	0.10	0.30	9.75	1.25	0.20	0.06	0.020	0.50	0.0100	1.50	Bal	0.20

• Alloy design philosophy:

- Slow down the destabilization of the various grain boundary & matrix strengthening features such as MX and M₂₃C₆ particles.
- Avoid and/or postpone the formation of unwanted phases such as the Zphase and Laves phase.
- Homogenization:
 - Induce complete chemical uniformity on the micro-scale to avoid "over rich" or "over lean" regions that could promote deleterious phase formation, thereby achieving long-term alloy stability.

<u>Cast</u> 9% Cr Martensitic Steel Homogenization Cycles Based on Cast Article Thickness

		Residual Inhomogeneity	/								
Section Size	<10%	<5%	<1%								
	Maximum Heat Treat Furnace Temperature - 1250°C										
Up to 5"	1125°C/1 h + 1250°C/3 h	1125°C/1 h + 1250°C/4 h	1125°C/1 h + 1250°C/8 h								
5-8″	1125°C/2 h + 1250°C/5 h	1125°C/2 h + 1250°C/8 h	1125°C/2 h + 1250°C/18 h								
> 8″	1125°C/2 h + 1250°C/10 h	1125°C/2 h + 1250°C/14 h	1125°C/2 h + 1250°C/30 h								
	Maximu	m Heat Treat Furnace Temperatu	ıre - 1200°C								
Up to 5″	1125°C/1 h + 1200°C/6 h	1125°C/1 h + 1200°C/8 h	1125°C/1 h + 1200°C/16 h								
5-8″	1125°C/2 h + 1200°C/10 h	1125°C/2 h + 1200°C/16 h	1125°C/2 h + 1200°C/32 h								
> 8″	1125°C/2 h + 1200°C/20 h	1125°C/2 h + 1200°C/30 h	1125°C/2 h + 1200°C/62 h								

Cast 9% Cr Martensitic Steel-Proof of Principle

- The preferred chemistry for <u>cast</u> CPJ-7, 9% Cr martensitic steel, was used to manufacture two heats. <u>No attempt was made to</u> <u>optimize the casting process at this time.</u>
- After homogenization, the <u>cast</u> CPJ-7 9% Cr steel ingot was heat treated in the following manner:
 - 1150°C/30 min/AC + 700°C/1 hour/AC
- Screening tensile tests were performed from material that solidified in an <u>equiaxed</u> manner (i.e., center of the casting) as well as from material that solidified in a <u>columnar</u> manner (i.e., exterior surface region of casting).
- Screening creep tests at 25 ksi and 650°C have been performed to assess the extent of creep capability relative to commercial cast steels used in power plants, (e.g., COST CB2).
- Mechanical performance looks *very good* with <u>cast</u> CPJ-7 showing outstanding mechanical performance for a casting.

Cast 9% Cr Steel: Detailed Tensile Mechanicals

Alloy Designation	Temperature (°F)	Temperature (°C)	Yield Strength (MPa)	Yield Strength (ksi)	Tensile Strength (MPa)	Tensile Strength (ksi)	Elongation (%)	RA (%)
	75	23.9	808	117.2	966	140.1	17	48
	75	23.9	803	116.5	964	139.8	17	42
	392	200	725	105.2	843	122.3	18	51
	392	200	725	105.2	841	122.0	18	56
	572	300	704	102.1	803	116.5	16	51
	572	300	702	101.8	803	116.5	16	54
CPJ-7A	752	400	664	96.3	756	109.6	17	57
Columnar	752	400	667	96.7	756	109.6	16	55
1150°C/30m/AC +	932	500	594	86.2	670	97.2	25	67
700°C/1h/AC	932	500	590	85.6	670	97.2	20	65
	1022	550	533	77.3	601	87.2	23	70
	1022	550	530	76.9	599	86.9	31	72
	1112	600	463	67.2	539	78.2	28	74
	1112	600	470	68.2	545	79.0	33	76
	1202	650	379	55.0	446	64.7	30	81
	1202	<mark>650</mark>	384	55.7	449	65.1	36	80
	75	23.9	<mark>80</mark> 9	117.4	970	140.7	18	39
	75	23.9	789	114.4	938	136.1	19	55
	392	200	720	104.4	831	120.5		
	392	200	720	104.4	833	120.8	17	56
	572	300	721	104.6	826	119.8	15	50
	572	300	699	101.4	795	115.3	15	55
CPJ-7A	752	400	<mark>685</mark>	99.4	773	112.1	15	43
Equiaxed	752	400	<mark>670</mark>	97.2	756	109.6	15	48
1150°C/30m/AC +	932	500	590	85.6	666	96.6		
700°C/1h/AC	932	500	594	86.2	669	97.0	20	65
	1022	550	531	77.0	602	87.3	20	58
	1022	550	532	77.2	602	87.3	22	67
	1112	600	466	67.6	538	78.0	22	62
	1112	600	468	67.9	542	78.6	29	73
	1202	650	371	53.8	443	64.3	31	79
	1202	650	384	55.7	449	65.1	36	80

Proof of Principle *Detailed Tensile Mechanicals*

Proof of Principle Creep Life & LMP Comparison

⁺ Creep tests still underway as of 4/29/2015

Proof of Principle - Summary Comparison Creep Life Cast 9% Cr Steels at 650°C

Alloy/Stress	CB2	Average LMP	Cast CPJ-7	Average LMP
25.0	27.5^	43.95^	828, 869, 886	46.43*
22.5	87.5^	44.78^	2469+, 1582	47.19 ⁺ , 46.87
20.0	278.5^	45.61^	2467 ⁺ , 3714	47.18 ⁺ , 47.48
17.4	282 ± 257 [#]	45.43#	860 ⁺ , 216 ⁺	46.43 ⁺ , 45.43 ⁺
14.5	2,716 ± 1,018 [#]	47.23#		
12.3	15,943 ± 2,802 [#]	48.53 [#]		

* Average of three (3) creep rupture tests. ⁺ Tests in progress (4/29/2015).

[#] Average of two (2) creep rupture tests (Reference: Jandova et al., 2012.)

^ Estimates of time to failure for CB2 based on LMP value from average curve at designated stress. Estimates in Table 2 based on curve fit to actual CB2 data (English units):

D. Jandova, J. Strejcius, J. Kasl and K. Kepka, "Correlation of microstructure development of cast CB2 steel after long-term creep tests with electrochemical characteristics," 2nd International Conference on Recent Trends in Structural Materials, Plzeň, 2012, 6 pages.

Planned Next Steps

- Continue creep screening activities through fall of 2015.
- Pay more attention to optimizing the casting process in order to produce sound castings (i.e., through the use of gating system, risers, filters, etc.).
- Consider larger scale castings for welding studies (in conjunction with wrought CPJ-7). Identify vendor to perform welding trials.
- Consider making larger CPJ-7 casting via air induction melting process.
- Assess toughness & fracture energy, followed by selected fatigue screening tests at room temperature for CPJ-7.
- Solicit comments on work during IPT Crosscutting Review Meeting and incorporate all relevant suggestions & ideas.

Thank you

Disclaimer: "This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name,trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."

