Ni-Based Alloys for Advanced Ultrasupercritical Steam Boilers

P.F. Tortorelli, K.A. Unocic, H. Wang Oak Ridge National Laboratory

J.P. Shingledecker EPRI

Fossil Energy Crosscutting Research Program Review April 25, 2015 Pittsburgh, Pennsylvania

Acknowledgements

Bob Swindeman

John Shingledecker

Michael Santella

Peter Tortorelli

Ian Wright

Acknowledgments

- Jeremy Moser, creep testing
- Tom Geer and Tracie Lowe, specimen prep and microstructural analysis
- Vito Cedro, NETL, federal project manager

ORNL's Role in the A-USC Boiler Effort

Inconel 740

- Generate high quality creep-rupture data using accepted test methods
 - Nickel-base alloys, including code case for Inconel 740
 - Supplement minimum required data for code-approved alloys, e.g., alloy 617, Inconel 740
 - Identify fabrication & welding issues on creep strength
- Understand microstructural underpinnings of creep strength and failure
- Predict life with confidence

Nature of Work Has Changed

Focus of Work Has Been on Ni-Based Alloys

	Ni	Cr	Со	ΑΙ	Ti	Nb	Мо	Fe	Mn	Si	С	В
740	Bal.	25	20	0.9	1.8	2.0	0.5	0.7	0.3	0.5	0.03	-
740H	Bal.	25	20	1.4	1.4	1.5	0.5	1.0	-	0.2	0.03	0.001
282	Bal.	20	10	1.5	2.1	-	8.5	1.5	0.3	0.15	0.06	0.005
617	Bal.	22	11	1.2	0.4	-	8.6	0.7	0.03	0.1	0.06	0.003

- Both Inconel 740 and Haynes 282 form γ' (Ni₃Al, Ni₃Ti) and carbides
- Alloy 617CCA (617B) is mainly solid solution strengthened
- Only Inconel 740 forms η (Ni₃Ti), with 740H having significantly less susceptibility to its formation (several studies)
- Vol% η that forms during exposure seems to have little effect on creep rupture (Shingledecker and Pharr, Tortorelli et al.)
- Alloys have elements that promote internal oxidation (Pint et al., Wright et al.)

Long-Term Creep-Rupture Data for 740/740H Build Confidence in A-USC Boiler Use

High Density of Cavities After 56,550 h

Grain Boundary Cavitation

Little γ' Depletion Noted at GBs

740H Long-Term Creep-Rupture Specimen Showed "Good" Microstructural Stability

Despite ~46,000 h at 750°C under Load, Little Eta Phase Observed for Inconel 740H

γ' Size Measurements Show Coarsening But Little Change in Later Stages

Boiler-Relevant Creep-Rupture Data for Haynes alloy 282

- Interest in Haynes 282 for boiler application triggered by turbines part of A-USC program
- Work to date has shown Haynes 282 may be preferred to 740
 - better creep-rupture resistance
 - minimal debits due to welding (and, possibly, cold work)
- Recommended 2-stage aging protocol (1010°C/1h+788°C/8h) deemed problematical by boiler manufacturers
- 2013: determined a one-step aging treatment (800°C/4h)
- FY15: Completed a creep-rupture test campaign for one-step aged Haynes 282

• Code case test campaign starting (different project)

Little Difference in Creep-Rupture Lifetimes for the Two Aging Treatments

Significant γ' Coarsening Observed for Haynes 282 Creep Specimens

Spherical y in Haynes 282 Contrasts with Cuboidal y in Inconel 740

Differences in Shape Can Be Explained by Respective y/y Lattice Mismatches

Larger misfit results in greater interfacial energy

- Cuboidal shape of precipitates
- Larger driving force for coarsening

Median 282 γ' Size Falls Above that of 740 But within Scatter

Particle Strengthening in Haynes 282

Similar Behavior as Load Varied

Creep-Rupture Testing of Alloy 617CCA Completed Earlier in Program

617 Bend Tests Followed Approach Used for Inconel 740 Shingledecker and Pharr, J. Mater. Eng. Perf., 2013

Cold-forming:

76.2 mm bend 33% OFS (outer fiber strain)

127.0 mm bend 20% OFS

171.4 mm bend 15% OFS

- 775° C, 38.6 MPa
- Strain Tracked by Diameter Increase With Time
- Outer Diameter measured at 0, 45, 90, 135° along tube length L

First alloy 617 Failure at ~32,800 h Recorded in Past Year

775°C, 38.6 MPa, 33% OFS

Cold Work by Tube Bending Had No Effect on Creep-Rupture Lifetime for 617CCA

In Contrast, Inconel 740 Showed a Significant Debit due to Cold Work of Tube Bends

Creep rupture of solid solution Ni-based alloys like 617CCA thought to be less susceptible to cold work effects than precipitation-strengthened alloys such as Inconel 740

Milestones

<u>FY14</u>

Prepare a summary report analyzing all results to date on creep behavior of alloy 282 (Completed)

Complete a report or paper on oxidation effects on Ni-based superalloys under creep conditions (Completed)

Complete a summary report on all alloy 617 data produced by the A-USC program with a comparison to other 617 databases. (Now May 2015)

Complete a proof-of-principle creep test of a co-extruded pipe (Now June 2015)

<u>FY15</u>

Complete a report or paper on the long-term high-temperature microstructural stability of Inconel 740 (Completed)

Issue final reports by alloy type on ORNL work for the A-USC boiler project (September 2015, probably December 2015)

Remaining Work Before End of A-USC Boiler Consortium Project in Dec. 2015

- Completion of microstructural analyses of specimens with longest rupture times and use of such data in advanced lifetime models for Ni-based superalloys
- Increasing max temperature in Inconel 740/740H code case to 825°C
- Multiple summary reports/papers on the different alloys tested and analyzed during the course of the A-USC boiler project

Summary

- Creep testing and microstructural analysis were used to assess thermal stability and time-dependent deformation behavior of precipitationstrengthened Inconel[®] alloy 740 and Haynes[®] 282[®] alloy, both alloys meet A-USC goal with single-step heat treatments
- Alloy 617CCA shows no effect of cold work on creep-rupture life
- Work is focused on remaining data and microstructural analyses and documentation in a set of final reports

STEM Measurements Used For Aging Data

Haynes 282 – 750°C, 320MPa 1462h

DF-STEM

γ/γ' misfit reduces as Mo increases

	Alloy element, wt%										
Alloy	Ni	Cr	Со	Мо	Ti	AI	Nb				
282	Bal.	20	10	8.5	2.1	1.5					
740	Bal.	24	19.9	0.5	1.5	1.3	1.6				

- Mo promotes formation of TCP phases, $\mu \& \sigma$
- TCP phases can be linked to premature creep cavitation

