

Post Combustion Carbon Capture Using Polyethylenimine Functionalized Titanate Nanotubes: Review and Preliminary Work

Hongbo Du¹, Akhil Kadiyala¹, Raghava Kommalapati^{1,2}, Ziaul Huque^{1,3}, Xinhua Shen⁴
¹ Center for Energy & Environmental Sustainability (CEES), Prairie View, Texas;
² Dept. of Civil & Environmental Engineering, Prairie View AM University, Prairie View, Texas;
³ Dept. of Mechanical Engineering, Prairie View AM University, Prairie View, Texas;
⁴Dept. of Earth Science, University of Northern Iowa, Cedar Falls, Iowa

Introduction

- The increasing CO₂ emissions have a critical impact on climate change and global warming, and have become a matter of great concern.
- Effective CO₂ emission abatement strategies such as carbon capture and storage (CCS) are required to combat this trend.
- Additional energy is required for CO₂ capture, and thus it is critical to capture CO₂ efficiently.
- Three major approaches for CCS are pre-combustion capture, post-combustion capture and oxyfuel process capture.

Post-Combustion Capture^[1,2]

- In post-combustion capture, CO₂ is removed from the flue gas after the combustion of the fossil fuel with air. The flue gas has low CO₂ content and low pressure (about 1 bar).
- Usually the pre-removal of NO_x and SO₂ from a flue gas is required before carbon capture.
- Main challenge: the low CO₂ partial pressure in the flue gas. 12-14% CO₂ in a flue gas for coal fired power plants and about 3.2-4.2% for natural gas based power plants.
- Big Advantage: Post-combustion carbon capture is especially desirable due to its potential to retrofit existing power plants with reasonable cost.
- CO2 is captured after the flue gases are cleaned up by Electro Static Precipitator (ESP) and Flue Gas Desulfurization (FGD).

Absorption Technologies

- > Amine absorption which is commercially available
- Aqua ammonia absorption
- Adsorbents for Post Combustion CO₂ Capture
- Zeolites, activated Carbon, amine functionalized adsorbents

and metallic organic frameworks^[4,5]

Polyethylenimine (PEI)

- ≻Linear PEI fragments
- ➢Branched PEI fragments
- ➤Dendrimer

 $\rm CO_2$ is captured when PEI is combined with different support materials like mesoporous silica, mesoporous alumina, zeolites, carbon nanotubes, porous polymer, titanate nanotubes, clay and metal organic frames (MOF) $^{\rm [6-9]}$

 RNH_2 $(RNH_3^+)_2CO_3^2$

Possible Mechanisms of CO₂ Reactions with Branched PEI^[6-9]

, + CO₂ =

Reaction of primary and secondary amine with CO_2 , and/or H_2O

Reaction between CO₂, H₂O and tertiary amine

First Application of PEI Polymer on CO₂ Capture^[10]

- Able to remove low concentration of CO₂ (~1 Torr) under ambient temperatures and pressure.
- Release CO_2 at low temperature (40°C) in vacuum

PEI-Modified Mesoporous MCM-41^[11]

adsorbents	temper- ature (°C)	adsorption capacity (mg/g-adsorbent)	desorption capacity (%)
MCM-41 only	50	14.3	100
MCM-41 only	75	8.6	100
MCM-41 only	100	6.6	99
MCM-41-PEĬ-15	75	19.4	101
MCM-41-PEI-30	75	68.7	98.3
ACM-41-PEI-50	50	44	24.7
MCM-41-PEI-50	75	112	99.8
MCM-41-PEI-50	100	110	84.1
MCM-41-PEI-75	75	133	101
PEI	75	109	56.4

PEI functionalized Protonated Titanate Nanotubes (PTNTs) [12]

- PTNTs are self-assembling nanostructures and have uniform pore size suitable for absorbents and catalysts supports.
 PEI-PTNTs were prepared by wet impregnation method.
- Experiments of PEI-PTNTs-50 exhibited high adsorptions at 75 and 100°C.
- Strong chemical bonding between PEI and PTNTs may guarantee the stability of nanostructures in CO₂ capture from power plant flue gas.

Our Research Plan and Experimental Setup

Develop optimized protocols for synthesis of TiO₂ nanotubes impregnated with PEI.
Characterize the impregnated nanotubes and use it for refining the parameters for synthesis such as temperature, concentration and time.

- Develop computational fluid dynamic (CFD) simulations of the carbon capture process in the reactor to optimize the reactor conditions for high carbon capture efficiency.
- Demonstrate the efficiency of impregnated TiO₂ tubes for carbon capture under various environmental conditions such as temperature and concentration.
 Establish a validated CED model and a standard operating procedure for carbon
- Establish a validated CFD model and a standard operating procedure for carbon capture using PEI impregnated TiO₂ nanotubes.

Schematic of experimental setup

CFD modeling : Porous media

Summary

- Discussion of post combustion CO₂ capture
- Comparison of absorption and adsorption for post combustion CO₂ capture
- Different promising technologies associated with branched PEI for CO₂ capture
- We prefer to further develop PEI Functionalized Protonated Titanate Nanotubes for post combustion CO₂ capture based on our investigation of current solid adsorbent technologies with PEI.

<u>References</u>

[1] Spignelli, B. P. Kawata, S. K. Opportunities and challenges in carbon dioxide capture. Journal of CO2 Utilization. 2013, 1 64 89. [3] [2] Sreenivaulu, G. Sayarti, D. V. Speachari, J. Raghavan, V. X. Journey into the process and engineering aspects of carbon capture technologies. Renewable & Sustainable Energy Reviews 2015, 41, 1324-1330. [3] Yu. C. H.; Huang, C. -H.; Tan, C. S. A Review of CO2 Capture by Absorption and Adsorption. Aerosol and Air Quality Research 2012, 12, 745-769. [4] Chen, C.; Kim, J.; Ahn, W. S. CO2 capture by Absorption and Adsorption. Aerosol and Air Quality Research 2012, 12, 745-769. [4] Chen, C.; Kim, J.; Ahn, W. S. CO2 capture by Absorption and Adsorption. *Herotochan Journal of Chemical Displaceting 2014*, 31, 1919-1934. [5] Gouedard, C.; Picn, D.; Laung, F.; Chang, Q.; Zhao, Y. CO2 capture by Polyethylenimine-modified fibrous adsorbent. Langmuir 2004, 34, 4569-6574. [7] Liu, Q.; Shi, Y.; Mang, D.; Tao, M.; Ho, Shi, Y. Carbon Dioxide Capture with Volyethylenimine-functionalized industrial-Garbon Handbules. Industrial & Engineering Demitry Network 2014, 33, 1740-78. [8] Liu, C.; Shi, Y.; Hang, D.; Zhao, H.; C.; Shi, Y.; Carbon Dioxide Capture with Volyethylenimine-modified fibrous adsorbent. Langmuir 2004, 34, 6567-6574. [9] Liu, Q.; Shi, Y.; Hang, D.; Tao, H.; And Y.; Shi, Y.; Carbon Dioxide Capture with Volyethylenimine-modified fibrous disorbent Multiwalied Carbon Handbules. Industrial & Engineering Demitry Network 2014, 33, 1740-78. [9] Saryapal, S.; Filthum, T.; Trella, J.; Strange, J.; Performance and properties of a solid amine sorbent for carbon dioxide capture - a review. Frontiers of Environmental Disords 2014, Serveg 2013, 73, 256-240. [10] Chen, Z.; Sheg, L.; Wang, B.; Huang, J.; Yu, G. Activated carbons and amine-modified materials for carbon dioxide capture - a review. Frontiers of Environmental 113, Vu, Z.; Song, C. S.; Shed, H.; Wang, B.; Huang, J.; Yu, G. Activated carbons and amine-modified materials for carbon dioxide capture - a review. Frontiers of Environme

Acknowledgment: This work is partially supported by a grant from the Department of Energy, National Energy Technology Laboratory Grant, DE-FE0023040.