

¹Department of Materials Science and Engineering ²Department of Mechanical Engineering and Materials Science The Pennsylvania State University, University Park, PA 16802 University of Pittsburgh, Pittsburgh, PA 15261

Computational Design and Discovery of Ni-base Alloys and Coatings: Al-Cr-Ni + Hf

Project Objectives

Develop a thermodynamic foundation for accelerated design of Ni-base alloys and coatings:

Ni-Co-Cr-Al + Si, Hf, Y (MCrAIX)

Study effects of major and minor alloying elements on the phase stability: Hf and Y additions to Ni-systems

Experimental validation

• Assist in the development of the automated thermodynamic modeling tool (ESPEI)

Methodology

ab initio DFT – Predict thermodynamic properties

X-Ray Diffraction – Phase identification

MY 10 µm

Coating Database

•••••

Electron Probe Micro-Analysis – Accurate compositional measurements

Xuan L. Liu¹, Thomas Gheno², Greta Lindwall¹, Austin Ross¹, Brian Gleeson² and Zi-Kui Liu¹

binary using DFT predictions

Liu et al. (2015) PLOS ONE 10(4) doi: 10.1371/journal.pone. 0121386.

1423 K *t* single-doped َ 1.2 عَ

Thermochemical data: enthalpy, entropy, heat capacity, activity... Scarce experimental data, supplemented by first-principles

Practical applications, alloy design, T, P, n_i conditions

0.05

0.15

0.1

Al-Hf-Ni isotherms Phase data from (1) (1) Nagarajan et al. (1997) *Z. Metall.* 88 p. 87-90

(2) Zhang et al. (2008) *Intermetallics* 16 p. 139-147

PENNSTATE

PHASES

PSU

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40Mole fraction Cr