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Phase identified Description Spatial characteristics 

g’ Primary strengthening precipitates, 

Ni3(Al,Ti) type 

Dendrite core: spherical 

Interdendritic: coarser, cuboidal 

TiN Primary nitrides (MN) Homogeneously disperse 

(TiMoCr)C Primary carbides (MC) Preferentially interdendritic 

s TCP phase, rich in Cr,Mo,Ni  

Detrimental intermetallic 

Depletes refractory elements 

Globular, preferentially interdendritic 

(TiMo)2SC Carbosulphide Adjacent to s  

Mo,Cr-carbides Lamellar g/carbide,  

Secondary carbides M23C6, M6C 

(* Matysiak, H. et al, 2013) 

As-solidified phase observation (VIM + Investment casting)*  

Orowan equation serves as the kinetic 

equation linking the macroscopic shear 

rate and microscopic dislocation activities:  

𝛾 𝛼 = 𝜌𝑀
𝛼𝑏𝑣𝛼 = 𝜌𝑀

𝛼𝑏𝑣𝛼 𝜎, 𝑇, 𝑆𝑖 , 𝑃𝑖 , …  

𝛾 𝛼 - Shear rate on slip system 𝛼 
𝜌𝑀
𝛼  - Mobile dislocation density of slip system 𝛼 

𝜎 - Applied stress 

𝑇 -Temperature 
𝑆𝑖  - State variables, e.g., dislocation densities 

and 𝛾′ volume fraction 
𝑃𝑖 - Material properties, e.g., modulus and APB 

energy. 

𝑣𝛼 𝜎, 𝑇, 𝑆𝑖 , 𝑃𝑖 , … =  
𝑣glide
𝛼 𝜎, 𝑇, 𝑆𝑖 , 𝑃𝑖 , 𝑄slip

𝛼 , if 𝑅escape ≫ 𝑅glide, e. g. tensile

𝑣climb
𝛼 𝜎, 𝑇, 𝑆𝑖 , 𝑃𝑖 , 𝑄self

𝛼 , if 𝑅escape ≪ 𝑅glide, e. g. creep
 

Dislocation 
sources 

Dislocation 
sources 

Escape via climb: 
reaction rate = 𝑹𝐞𝐬𝐜𝐚𝐩𝐞 

Glide through obstacles: 
reaction rate = 𝑹𝐞𝐬𝐜𝐚𝐩𝐞 

(Dyson, 2009) 

(Ma, 2006) 

Heterogeneous deformation 

Dislocations 

Statistically-stored 
dislocations (SSDs) 

Mobile 

 

Immobile 

 

Geometrically-
necessary 

dislocations (GNDs) 

Immobile 

 

𝜎 𝜎 Homogeneous 

structure -> stress field 

• Equal densities of “+” and “-” 

dislocations accumulated 
• No long-range influence 

𝜎 𝜎 

• Significant stress gradient 
leading to a net density of 
one sign of dislocations 

• Introduced both a curvature 
as well as a strain 

Plasticity carriers: 
𝛾 𝛼 = 𝜌𝑀

𝛼𝑏𝑣𝛼 

Origin of shear 
resistance for 𝜌𝑀

𝛼  in FCC 
crystals, influencing 𝑣𝛼 

Task 2 Task 3 Task 4 Task 5 

Develop a physics-based, microstructure-informed model for accurately 

predicting long-term creep behavior for heterogeneous weld structure 

H282* 

• High firing temperature for improved fuel efficiency 

• Combustor materials - creep strength, oxidation & corrosion resistance 

• Long-term creep prediction a key challenge 

• Physics-based modeling of creep life for AUSC steam turbine rotor alloy HA282 in 
prior DOE program 

• Challenge: heterogeneous (weld) microstructure, higher temperature (1500-1700˚F) 

FZ 

HAZ 

Representative volume 

element (RVE) in weldment 

Precipitate microstructure 

• 𝛾′ volume fraction, 

distribution 

FFT-based crystal 
plasticity (image-
based, full-field) 

Polycrystal response 
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Constitutive model 
Continuum mechanics 

Microstructure and property heterogeneities 

Potential drop 
measurement 

Digital image 
correlation 

Creep deformation modes 

• Intermediate stresses: dislocation climb-bypass 
• High stresses: g' shearing 
• Low stresses (high T): diffusional creep 

Secondary Creep 

Precipitate-dislocation 

interaction. Climb/Diffusion  

Tertiary Creep 

Grain boundary cavitation 

Primary Creep 

Strain hardening 

dislocation-dislocation 

interaction  

IN740  (Casias Ph.D Thesis) 

𝜺 𝒔𝒆𝒄 

𝜺𝒑𝒓𝒊𝒎𝒂𝒓𝒚 

𝜆 

𝜺𝒄𝒓𝒆𝒆𝒑 = 𝜺𝒅𝒊𝒔𝒍𝒐𝒄 + 𝜺𝒅𝒊𝒇𝒇𝒖𝒔𝒊𝒐𝒏 

𝜺 𝒅𝒊𝒇𝒇𝒖𝒔𝒊𝒐𝒏 = 𝒄𝑳𝝈 + 𝒄𝑩 𝝈+𝜺 𝑩𝑫+𝜺 𝑺𝑫 

𝒄𝑩 = 𝟑𝝅𝑭
𝟒𝑫𝑩𝜹𝑩𝜴

𝒅𝒌𝑩𝑻
 𝒄𝑳 = 𝑭

𝟏𝟐𝑫𝒗𝜴

𝒌𝑩𝑻𝒅𝟐
 

𝜺 𝒅𝒊𝒔𝒍𝒐𝒄 = 𝑨𝝆(C) 𝒇 𝟏 − 𝒇
𝝅

𝟒𝒇
− 𝟏 𝒔𝒊𝒏𝒉 𝑩

𝝈𝒆𝒇𝒇 − 𝝈𝒑−𝝈𝟎

𝑴𝒌𝑻
𝝀𝒃𝟐  

𝝈𝒆𝒇𝒇 =
𝝈𝒂𝒑𝒑𝒍𝒊𝒆𝒅(𝟏+𝜺

𝒄𝒓𝒆𝒆𝒑)

𝟏−𝑫𝒔 
   

𝝈𝒑 = 𝑬
𝒇

𝟏 − 𝒇
𝜺 𝒅𝒊𝒔𝒍𝒐𝒄 𝟏 − (𝟏 + 𝟐𝒇)

𝝈𝒑

𝟐𝒇𝝈𝒆𝒇𝒇
 

            𝝈𝒑 =
𝜸𝑨𝑷𝑩

𝟐𝒃

𝟏𝟐𝜸𝑨𝑷𝑩𝒇𝒓

𝝅𝑮𝒃𝟐
− 𝒇  

 
            𝝈𝒐=0.25MG(T)b 𝝆, 𝝆= 𝝆(C)  

(Dyson, 2009) 

For climb 

For precipitate shearing 

For D-D interaction 

Constitutive creep model 
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after solution & aging 

Ni Cr Co Mo Ti Al 

EPMA fit k 1.04 0.97 1.08 0.86 0.74 0.90 

Scheil 1.06 0.98 1.04 0.68 0.62 1.14 

𝐶𝑠 = 𝑘𝐶0 1 − 𝑓𝑠
𝑘−1 

Micro-segregation 

Dendrite core Interdendritic 

(20ksi) 

Welded HA282 

L+g 

L+g+
MC 

L+g+MC
+M6C 

L+g+MC
+s 

L+g+MC+
s+M3B2 

L 

Scheil simul. 

Diffusion simul. 

Lever rule 

(HA282) 

(×1000) 


