

Predicting the Oxidation/Corrosion Performance of Structural Alloys in Supercritical CO₂ (sCO₂) **DE-FE0024120**

J. Shingledecker, Ph.D.

Program Manager, EPRI Fossil Materials & Repair Program

EPRI (J. Shingledecker, S. Kung, D. Thimsen), DNV-GL (B. Tossey), ORNL (A. Sabau), WrightHT (I. Wright)

Benefits of the Proposed sCO₂ Power Cycles

(Brayton Cycles):

- Efficiency (reduced fuel costs & lower emissions)
- Potential Transformational Technology (up to 4% efficiency improvement over Rankin cycle at >700°C)
- Some configurations provide sequestration-ready pure CO₂

Project Status:

- Literature review, final materials selection, and sample machining in progress and on schedule.
 - Gr. 91, 304, and Alloy 740/740H chosen for first tests and comparison with literature
 - Vendor discussion and review of literature to

stream

Critical Components of sCO₂ Cycles Requiring Materials Development: Recuperators / Heat-Exchangers

- 4-10X heat-duty of Rankin Cycle feedwater heaters
- Unique compact designs
- Expensive alloys required for high temperatures
- Small channels
- Large surface area
- Brazing/diffusion bonding
- Blockage
- **Corrosion/oxidation = Unknown**

determine key ~7 alloys

Summary of Proposed Conditions for Recuperators/Heat Exchangers in Various sCO₂ Cycles

Cycle Type	Thermal	Max Temp.	Pressure	sCO ₂	H ₂ O	Others
	Resource	(°C)	(MPa)	Purity		
Closed	Wasteheat	485	23.3	High	Near	
	Nuclear	545	20		zero	
	Solar	700	~30			
	N. Gas	750				
	Coal	700	27.6			
Open	N. Gas / Coal	~700	30	95%	2%	O ₂ , Ar, NOx,
	Syngas					SO ₂

Assembly of high-pressure sCO₂ testing facility complete, and the initial 300-hour shake-down testing has started

Objective & Impact

- Predict the oxidation/corrosion performance of structural alloys in high-temperature high-pressure supercritical CO₂ (sCO₂)
- Combine laboratory testing & computational modeling including unique attributes of sCO₂ heat exchangers to accomplish this goal
- Improved confidence in materials selection for high-temperature sCO₂ heat-exchangers
- Stream-lined testing and/or improved criteria for materials selection based on oxidation/corrosion
- Possibility to home-in on cost-effective materials and temperature limits

Collaborative Team Approach:

- Review status of technology and likely materials and environments. (EPRI)
- Laboratory testing: 600-750°C, 200bar sCO₂. (DNV-GL)
- Development of oxide growth kinetics, propensity for exfoliation, and comparisons with steam. (EPRI, WrightHT)
- Development of a growth and exfoliation model based on existing model architecture for steam. (ORNL)

- Selection of test conditions for long-term tests ongoing.
 - Key issue is impurities (CO₂ purity, H₂O, hydrocarbons, others) likely in 'open and semi-open' fossil systems
 - Review of conditions for many different configurations is complete
- Review of literature indicates some useful kinetic data are available for corrosion in sCO₂ and comparison with steam.
 - Major deficiency, little useful data on oxide thickness and morphology.

© 2015 Electric Power Research Institute, Inc. All rights reserved.