

1

Novel Low-Cost and Environmentally-Friendly Synthesis of Core-Shell Structured Micro-Particles for Fossil Energy Applications

> Abu Kamara Department of Chemistry <u>Howard University</u>

Project Team

Howard University (MOCVD Particle Growth) PI-Jason Matthews, PhD Abu Kamara (G) Oluwaseun Falola (G) Alyssa Buchannan (U)

The Ohio State University (Ionic Diffusion) L.S. Fan, PhD Cheng Chung (G) Liang Zeng, PhD Zhenchao Sun, PhD

OUTLINE

- Introduction
- Background
- Methodology
- Results
- Conclusion

Introduction

- Core-shell structured particles
 - Energy, Catalysis, Pharmaceutical Science and Physics
 - Nano-and biomaterial applications
- Synthetic approach
 - Coating Process Application of shell material onto the core
- Core-shell structure exhibits high surface area and catalytic-like properties

Simplified illustration of a typical core-shell structured particle

Proposed Synthetic Methods

- Metal Organic Chemical Vapor Deposition (AP-MOCVD)
 - Utilize a low cost hot walled reactor as an alternate route for the preparation of core-shell structures.
 - Metal organic precursors
- Ionic Diffusion via Redox Cycles
 - Utilize the movement of atoms during redox, forming a core-shell like structure
 - In depth testing of different metal oxides particles under redox environment

Potential Significance

- Cost effective method
- Improved catalytic activity
- Potential application in Chemical looping combustion/gasification, and sorbentbased fossil fuel

Metal Organic Chemical Vapor Deposition (AP-MOCVD)

Horizontal hot-wall CVD reactor

Physicochemical reactions processes in the CVD Reactor : STEP (1&2)

Chemical Vapor Deposition - Step 3

Adsorption of Precursor Molecules to Surface

Chemical Vapor Deposition - Step 4

Decomposition of Precursor and Incorporation into Solid Films

Chemical Vapor Deposition - Step 5

Recombination of Molecular Byproducts and Desorption into Gas Phase

Chemical Looping Technology

Catalytic process that converts fossil fuels into energy and CO₂ without extra energy consumption

$$(n + m)Me_xO_y + nCO + mH_2 \rightarrow (n + m)Me_xO_{y-1} + nCO_2 + mH_2O$$
(2)

$$2Me_{x}O_{y-1} + O_{2} \rightarrow 2Me_{x}O_{y}$$
(3)

$$(2n+1)H_2 + nCO \rightarrow C_nH_{2n+2} + nH_2O$$
(4)

Statement of Project Objectives

- Synthesize stronger and more chemically reactive particles for use in fossil energy applications
- Synthesize and characterize Fe₂O₃-shell/Al₂O₃-core micro-particles prepared via the cyclic ionic diffusion and AP-MOCVD methods.
- Gain control of shell thickness
- Comparison of morphology, mechanical strength, and reactivity of synthesized core-shell structured particles synthesized via vapor deposition and ionic diffusion

Platform of β-ketoiminate ligand for the synthesis of the precursor

MOCVD-Precursor Requirements

- Volatile and thermally stable
- Inexpensive and simple to synthesize
- No premature decomposition of the precursor prior to reaching the substrate

Advantages of AP-MOCVD

- Films with uniform thickness under mild conditions (<700°C)
- High quality thin films with less impurities
- High growth rate
- Highly crystalline films

Synthesized Free ligands

R = 1. CH₂CH₃ 2. CH₃

R' =

- 1. Isopropyl
- 2. Isobutyl
- 3. Butyl
- 4. Cyclopentyl
- 5. Cyclohexyl
- 6. Methoxypropyl
- 7. t-butyl
- 8. Propyl

Synthesis of Fe(III) Complex

Structure of complex 18 Tris(methyl-3-(isopropyl)amino-2-butenoato)iron(III)

TGA: of complex of complex 18

Fe(acac)₃

TGA- thermogram of Iron (III) oxide precursor 33 exhibit higher volatility and minimal decomposition.

Structure of complex 33 Tris(1,2-diphenylpropane-1,2-dionato)iron(III)

Ph= ~

Coating mode of Particle

• Gas-solid contact in the CVD Reactor

Rotary Bed

Evaluation of the synthesized Iron(III)oxide β-diketonate MOCVD precursor

Evaluated TGA thermogram of Iron (III)oxide precursor

Complexes 31 and 33 β -diketonate exhibit higher volatility and stability

Determination of Source and Decomposition Temperatures

Temperature distribution profile in the Hot-Wall Reactor (Gas flow changes the temp. profile slightly)

AP-MOCVD hot wall reactor with deposited iron oxide at 220°C

Mushin E.A, chemical vap. Deposition 11.07.2007 p(23)

SEM micrograph of Fe₂O₃ coated Al₂O₃ particle at 220°C

(b) 200 x

(c) Fe_2O_3 coated AI_2O_3 at substrate temperature of 220° C.

(d) Fresh uncoated Al₂O₃

Elemental composition analysis of Fe₂O₃ coated Al₂O₃ particle determine by EDS

(a) Before Annealing

Element	Relative atomic Percentage
Aluminum (Al)	31
Oxygen (O)	65
Iron (Fe)	3

(b) After Annealing at 300°C for 30 minutes

Element	Relative atomic Percentage
Aluminum (Al)	42
Oxygen (O)	52
Iron (Fe)	6

MOCVD Growth Optimization and EDS Analysis Four CVD growth cycles with deposition temperature 220° – 360°C at 20°C interval

annealed at 500°C for 30 minutes

Sample	Iron	Oxygen	Aluminum
P(2)	1.91	58.41	36.64
P(3)	0.80	53.09	40.79
P(5)	3.13	63.71	29.71

Synthesized Iron(III)oxide Precursor 45 Tris(2,2,6,6-tetramethyl -3,5-heptanedionato)iron(III)

Molecular structure of Fe(thmd)₃ Iron(III) Complex 45 TGA: after recrystallization in acetone/ water solution

Elemental composition of Fe₂O₃ coated Al₂O₃ as determine by EDS after annealing at 500^oC for 30 minutes

Sample	Deposition	# cycles	Iron	Oxygen	Aluminum
	temp. ⁰C				
T1	240	4	1.98	55.25	41.92
T2	280	4	14.61	57.41	27.98
T3	300	4	2.51	60.39	37.11
T4	320	4	9.71	52.51	37.78
T5	340	4	1.62	67.99	30.39
T03	360	10	75.53	18.0	6.47

SEM micrograph of Core-Shell particle derived from sample T03 after 10 CVD cycles

b) x20,000

c) x30,000

d) x50,000

EDS Spectrum of Sample T03 after 10 CVD Cycles

Future work

- Increasing the number of CVD cycles utilizing the Fe(thmd)₃ precursor in order to form a high quality iron oxide shell.
- The synthesized particles will be evaluated for their catalytic activity.

Shell-Formation Mechanism

Ionic Diffusion via Cyclic Redox Cycles

Experimental Method

In Thermo-gravimetric Analyzer (TGA)

Reduction

- H2 balanced with N2Flushing
- NitrogenOxidation

Air

Complete Reduction and Oxidation during cyclic reaction at 900 Celsius. Dashed line represent temperature. Red double arrow represents reduction and blue double arrow represent oxidation.

Parametric Study

Particle Size

- 2 mm
- 0.35 mm

Number of cycles

- 40 cycles
- 100 cycles

Percent iron loading balanced with aluminum oxide

- 40% Iron Oxide
- 20 % Iron Oxide

However, the iron-rich shells formed were too thin to be distinguished between different micro-particles. A better method is needed.

Improving Ionic Diffusion

- Reducing gaseous oxygen concentration during oxidation
 - Maintain reduced iron gradient in the particle and prevent iron from being oxidized before diffusion toward the surface
- Increasing nitrogen flushing time
 - > Allowing more time for iron to diffuse per redox cycle before being oxidized

SEM and EDAX Analysis on a fractured micro-particle with longer flushing time

Law: 381.0 0 Crits 81.000 keV Det: Octane Prime Det

Summary and Future Work

- An improved method was developed to encourage iron diffusion toward the surface
- SEM and EDAX spot analysis revealed observable phase separation on micro-particles with longer flushing time
- Effect of lowering oxygen concentration during oxidation will be studied

Acknowledgements

- •DOE-NETL DOE-FE0011515
- Howard University Graduate School
- •Ohio State University