

2015 NETL Crosscutting Research Review Meeting April 27-30, 2015

SBIR Phase II Project: DOE 12-14C

Phase II Contract #: DE-SC-0008269

Advanced Ceramic Materials and Packaging Technologies for Realizing Sensors Operable up to 1800 Celsius in Advanced Energy Generation Systems

> Authors: Yiping Liu (PI), Laurel Frediani, Michael Usrey (Presenter) Contact: Michael Usrey, Email: musrey@sporian.com, Phone Number: 303-516-9075 x19

Sporian Microsystems, Inc. (www.sporian.com) 515 Courtney Way - Suite B, Lafayette, CO 80026-8821

Acknowledgement

This material is based upon work supported by the Department of Energy under Award Number DE-SC0008269.

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Overview

- Sporian Introduction
- Project Motivation
- Prior, Related Work <1400C
- Current Effort Progress Update
- Discussion/Questions

Sporian Introduction

• 3 primary development efforts at Sporian:

- Physical sensor suites shock, humidity, temperature, strain, etc.
- Photonic-based wireless chemical/bio-sensors.
- Harsh Environment/High Temperature sensors & packaging
 - Pius: Systems integration (signal processing, logging, storage, communications)

Motivation

- Turbine efficiencies are driving combustion temperatures higher. Up to 1800C depending on fuel.
- Existing combustor thermocouples are expensive and short-lived. Useful only in design phase of turbine life-cycle.
- Efficiency lost due to use of thermocouples in exhaust to infer combustion temperatures in fielded turbines.
- Additional efficiency gains possible with dynamic pressure measurement.

Prior, Related Work <1400C Starting **UV Light** Pyrolysis Chemicals Synthesis **Cross-linking Fully dense** Transparent Precursor ceramic Solid or film -3mm **PDC Sensor** Wide Range, In Situ Pressure Sensor Suite for turbine engines

Prior, Related Work <1400C Features, Advantages and Benefits

Features	Advantages	Benefits
Polymer derived ceramic materials	 Operating temperature >1000°C w/o liquid cooling or fiber routing Pressures up to and beyond 1000 psia Highly oxidation/corrosion resistant Thermal shock resistant Low creep rate & diffusion rate 	 Lower weight, smaller size Lower cost, low-maintenance Higher durability Higher operational availability
Temperature / pressure sensor suite	 Improved T-compensation of pressure measurements Opportunity for redundancy and/or sensor fusion 	 Lower weight, smaller size Higher accuracy
Immersion sensing at source	 Eliminate stand-off tubes Avoid tube moisture collection 	 Lower cost, higher accuracy Lower weight Improved dynamic response Reduced latency Avoid failure mechanism
Electronics based	Compatible with existing controls & CBM	Lower cost

8

Prior, Related Work <1400C Performance

	PIWG	
Specification	Target	Achieved
Pressure Range (psi)	25-750	Atm-1000
Operation Temperature (C)	700-1350	25-1350
Natural Frequency	> 100khz	TBD
Internally Compensated Temp. Range (C)	700-1350	700-1350
Length (in.)	1.25-3.00	1-10 (modifiable)
Diameter (in)	<0.25	0.25
Sensitivity/Combined Uncertainties	≤ 1% FS	≤ 1% FS
Power (VDC)	5-10	12 V (modifiable)

Prior, Related Work <1400C Demonstrations

Asset	Station	Hours *	Max T (°C)	Max P (psi)
Laboratory	NA	-	1400	1000
OEM Burner Rig	NA	8	**	**
OEM Burner Rig	NA	535	**	**
DOE Burner Rig	NA	150	1000	30
Honeywell HTF 7000	P3	24	**	**
GE (NAVAIR) T700	P3	200	**	**
OEM Engine	P3, P4, P4.5	100	**	**
Sandia Nitrate Salt	-	500	300	-
UW Chloride Salt	-	500	750	-
PNNL Gamma 10 ⁸	-	-	-	-
USGS Neutron 10 ¹⁸	-	-	-	-

* Test durations dictated by budgets. All sensors were fully operational after test completion.

** Proprietary

Current Effort Progress Update

- Extend Sporian's Existing Ceramic Sensors and Packaging Technology to Ultra-high Temperatures (UHT): 1600-1800°C
- 1.Work with OEMs to guide the development of a useful implementation of the proposed UHT sensor technology: Commercialization and transition efforts.
- 2. Synthesis of UV curable B-doped precursor formulations to realize SiBCN materials and sensors stable to target temperatures
- 3. Development of detailed designs and prototypes for a 1800°C capable temperature sensor, packaging, and associated drive/conditioning electronics
- 4. Development of designs and prototypes for a >1600°C capable pressure and temperature sensor suite, packaging, and associated drive/conditioning electronics
- 5. Rigorous testing of prototype sensors/packaging in lab scale environment to validate potential application suitability
- 6. Revise UHT ceramic materials, sensor fabrication techniques and packaging designs in order to build higher level hardware for testing.
- 7. Demonstration of UHT prototypes in application relevant testing system.

OEM Collaboration/Coordination

- Strong interest, requirements, and some in-kind support from:
 - Turbine OEMs
 - Controls/CBM OEMs
 - Industry Research Institutions & Consortia
 - Academic Institutions
 - Established sensor OEMs

SPORIAN MICROSYSTEMS, IN

Ultra-high Temperature SiBCN Ceramics

- SiCN has shown excellent HT thermo-mechanical properties.
- Sporian existing SiCN formulations can work safely under 1350°C
- SiBCN is proven to be thermally stable up to 1800°C

Selected Literature Review of SiBCN

Empirical Formula of Ceramic	Maxima Temperature of Stability	Selected Reference from More than 100 Papers/Reviews
$\begin{array}{c} Si_{2.9}B_{1.0}C_{14.0}N_{2.9}\\ Si_{5.3}B_{1.0}C_{19.0}N_{3.4} \end{array}$	2200°C-30min	Wang and Riedel, 2001
$Si_{3.0}B_{1.0}C_{4.3}N_{2.0}$	~2000°C	Riedel, 1996
Si _{1.0} B _{1.0} C _{1.6} N _{2.4}	~1785°C	Wilfert and Jansen, 2012
$Si_{1.0}B_{1.0}C_{1.7}N_{2.3}$	~1700°C	Weinmann, 2008
$Si_{2.0}B_{1.0}C_{3.4}N_{2.3}$	~1600°C	Zhang, 2011
$Si_{1.0}B_{1.0}C_{2.0}N_{2.8}$	>1400°C	Tang, 2009

Weight Loss at High Temperatures

Challenges:

- Synthesis of new precursors
- Viscosity control for workability/patternability
- UV cure capability to make useful devices
- Survive pyrolysis
- Contamination control for thermal stability

13

Sporian Synthesis of Fully Dense SiBCN

- Synthesized boron-doped polysilazane with good workability/stability
- Incorporated UV-curability to polyborosilazane precursors
- Achieved dense SiBCN ceramic materials and defect free devices

Synthesis of B-doped Polyborosilazane

UV Curable Precursor and B-doped SiBCN

B-doped Polymer and SiBCN Sensor and Coupons

Thermal Stability of Sporian SiBCN

- Fabricated SiBCN Material Coupons Survived 1600°C-4hr in Argon
 - 1600°C Thermal Test: weight loss ~1.3%
 - 1700°C Thermal Test: weight loss ~12%

UV curable B-doped precursor and SiBCN:

Reference: non B-doped SiCN

1700°C-4hr

Argon

Decomposed

15

Oxidation Resistance of Sporian SiBCN

SiBCN Coupons Showed Oxidation Resistance up to 1600°C in Air

1550°C-4hr Air flow

1550°C Air Thermal Test Results:

- No Weight Change
- No Dimensional Change

1600°C Air Thermal Test Results:

- Formation of surface passive oxide layer
- Small weight loss: 2~5%
- Small increase in dimension: 0~4%
- Depends on formulation and thickness

Air

1600°C-4hr

Mechanical Strength of Sporian SiBCN

• SiBCN - Stable mechanical strength compared w/ non B-doped SiCN

Three-point Bending Test Coupons

Mechanical Testing System

Three-point Bending Test Results

Development of Ultra-High T MoSi₂

Development of Sporian 1800°C MoSi₂ Sensor Materials:

- Re-shapable and stackable green tape
- Micro fabrication and laser machinability
- High density (98%) and high strength (351 MPa)
- Thermal stability and oxidation resistance at 1800°C
- Comparable to the highest commercially available grade
- Compatible CTE with alumina substrates

Sintered Structures and Packaged MoSi₂ Sensor Element

Screen Printed MoSi₂ Paste/Ink on Alumina Substrate

Current Prototype 1800°C Temperature Sensor (Designed for NETL Rig Testing)

Sporian Sensor Packaging Design and Probe Assembly

'Smart' Signal Conditioning Electronics

Features:

- Sapphire-sheathed ultra-high temperature sensor packaging.
- Probe is suitable for high-pressures, high-temperatures and small particles.
- Length 8.5", OD 0.375", Fitting: 1" MNPT, Length of HT MI cable: 3.5"
- "Smart" Signal conditioning electronics is capable of driving the sensor over its entire operational range and measure the response.

Current Prototype 1600°C P/T Sensor (Designed for NETL Rig Testing)

NETL Rig Testing Results (1st Round)

NETL Aerothermal Rig

2014 Preliminary Results:

- Testing date: 10-29, 11-5, 11-12-2014
- Test cycles: Three
- Maximum T : 2000F (1100°C)
- Total duration: 30 hours
- Stable response and performance

Typical Sporian Probe Response Data

Summary

- 1. Developed UV-curable/patternable precursor
- 2. Obtained defect-free, polymer derived, fully dense SiBCN
- 3. Thermal stability to 1600°C in Argon weight loss <1.3%
- 4. Oxidation resistance to 1550°C in air weight loss <2%
- 5. Stable mechanical strength up to 1400°C
- 6. UHT packaging temperature probes survived 1800C in lab and 2000F (1100°C) 30hr NETL Aerothermal Rig Test